留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深度学习的载体滚转角估计方法研究

冯璐 吴鹏 郑昱 张竹娴

冯璐, 吴鹏, 郑昱, 张竹娴. 基于深度学习的载体滚转角估计方法研究[J]. 全球定位系统. doi: 10.12265/j.gnss.2024078
引用本文: 冯璐, 吴鹏, 郑昱, 张竹娴. 基于深度学习的载体滚转角估计方法研究[J]. 全球定位系统. doi: 10.12265/j.gnss.2024078
FENG Lu, WU Peng, ZHENG Yu, ZHANG Zhuxian. Research on roll angle estimation method based on deep learning[J]. GNSS World of China. doi: 10.12265/j.gnss.2024078
Citation: FENG Lu, WU Peng, ZHENG Yu, ZHANG Zhuxian. Research on roll angle estimation method based on deep learning[J]. GNSS World of China. doi: 10.12265/j.gnss.2024078

基于深度学习的载体滚转角估计方法研究

doi: 10.12265/j.gnss.2024078
基金项目: 湖南省普通高等学校科技创新团队支持计划;湖南省科技厅重点研发项目(2022GK2026,2024JK2062);湖南省自然资源厅科技计划项目(2023-78);湖南省教育厅科研计划重点项目(23A0609)
详细信息
    作者简介:

    冯璐:(1983—),女,硕士,副教授,研究方向为卫星导航定位测姿技术及应用. E-mail:fenglu@ccsu.edu.cn

    吴鹏:(1983—),男,博士,副教授,硕士生导师,研究方向为卫星导航信息处理算法、嵌入式软件架构设计、精确制导炮弹导航算法等. E-mail:1346773700@163.com

    郑昱:(1989—),男,博士,副教授,研究方向为卫星导航信号反演技术、遥感遥测技术. E-mail:2415898545@qq.com

    张竹娴:(1984—),女,博士,讲师,研究方向为卫星导航信号反演技术、遥感遥测技术. E-mail:1584767632@qq.com

    通信作者:

    吴 鹏E-mail:1346773700@163.com

  • 中图分类号: P228.8

Research on roll angle estimation method based on deep learning

  • 摘要: 姿态测量技术是载体运动状态和安全监测的基础. 载体自旋运动使得飞行器各姿态角之间互相耦合,对载体的飞行控制带来严重影响. 针对载体滚转下GNSS信号入射方向周期性变化特征,本文提出一种长短期记忆神经网络的深度学习方法,以确定载体的实时滚转角. 通过对载体滚转状态下单天线接收卫星信号能量特征的分析,得到载体实时滚转角与接收信号能量幅值关联变化模型,并分析了卫星在轨运行时其空间位置改变对该模型的影响;然后采用长短期记忆(long short termmemory, LSTM)神经网络方法对实测信号中的周期性变化特征进行训练,得到网络各项参数;最后将训练参数用于对实时接收的信号能量进行预测及降噪,并将预测结果通过模型匹配进行载体实时滚转角测算. 为验证文中所提出方法的性能,开展了对天滚转实验. 实验结果表明:LSTM深度学习方法可还原复杂的信号能量特征,并实现实时载体滚转角测算.

     

  • 图  1  矩形微带天线模型

    图  2  滚转坐标系与地心地固坐标系关系

    图  3  卫星信号能量与载体滚转角关联变化示意图

    图  4  BDS GEO卫星24 h运行轨迹

    图  5  LSTM网络单元结构图

    图  6  LSTM网络载体滚转角估计算法流程

    图  7  载体旋转下接收信号能量与理论值

    图  8  卫星信号能量预测结果

    图  9  旋转实验平台示意图

    图  10  LSTM网络对能量信号预测效果分析

    图  11  不同转速下三种方法的载体滚转角预测结果

    表  1  不同方法下滚转角估计误差分析

    算法 2 r/s
    标准差/(°)
    10 r/s
    标准差/(°)
    20 r/s
    标准差/(°)
    平均滚转角
    估计标准差/(°)
    LSTM 7.703 6.937 10.300 8.313
    CNN-
    LSTM
    13.017 13.525 19.559 15.367
    LS 12.780 14.227 19.371 15.460
    下载: 导出CSV
  • [1] LE V D, NGUYEN A T, NGUYEN L H, et al. Effectiveness analysis of spin motion in reducing dispersion of sounding rocket flight due to thrust misalignment[J]. International journal of aeronautical and space sciences, 2021, 22(5): 1194-1208. DOI: 10.1007/s42405-021-00383-x
    [2] YANG D, XIONG Y L, REN Q, et al. Nutation instability of spinning solid rocket motor spacecraft[J]. Chinese journal of aeronautics, 2017, 30(4): 1363-1372. DOI: 10.1016/j.cja.2017.06.005
    [3] YANG W C, WANG Z Q, SHEN C W, et al. Design of a roll angle measuring sensor[J]. IEEE access, 2020(8): 115159-115166. DOI: 10.1109/access.2020.3004365
    [4] GROVES P. Principles of GNSS, inertial, and multisensor integrated navigation systems[M]. Artech, 2007: 1.
    [5] AL-RAWASHDEH Y M, ELSHAFEI M, EL-FEIRIK S. Passive attitude estimation using gyroscopes and all-accelerometer IMU[C]// 2016 7th International Conference on Mechanical and Aerospace Engineering (ICMAE). IEEE, 2016. DOI: 10.1109/icmae.2016.7549568.
    [6] 代桃高, 宫帅帅, 魏明, 等. 一种GNSS双天线姿态确定及点位标定方法研究[J]. 全球定位系统, 2019, 44(6): 110-115. DOI: 10.13442/j.gnss.1008-9288.2019.06.018
    [7] 陆尤明, 刘刚, 崔晓伟, 等. 基于双天线联合的GNSS信号抗旋转跟踪算法[J]. 清华大学学报(自然科学版), 2021, 61(9): 1015-1024. DOI: 10.16511/j.cnki.qhdxxb.2021.21.025
    [8] 廉璞, 牟东, 青泽, 等. 侵彻弹药姿态测量技术研究现状及发展[J]. 探测与控制学报, 2021, 43(2): 1-9.
    [9] NGUYEN D N, NGUYEN T A. Investigate the relationship between the vehicle roll angle and other factors when steering[J]. Modelling and simulation in engineering, 2023, 2023: 1-15. DOI: 10.1155/2023/6069078
    [10] COHEN C, PARKINSON B, MCNALLY B. Flight tests of attitude determination using GPS compared against an inertial navigation unit[J]. Navigation, 1994, 41(1): 83-97. DOI: 10.1002/j.2161-4296.1994.tb02323.x
    [11] LI N, ZHAO L, LI L, et al. Integrity monitoring of high-accuracy GNSS-based attitude determination[J]. GPS solutions, 2018, 22(4): 1-13. DOI: 10.1007/s10291-018-0787-x
    [12] IM H C, LEE S J. GPS signal tracking on a multi-antenna mounted spinning vehicle by compensating for the spin effects[J]. International journal of control, automation and systems, 2018, 16(2): 867-874. DOI: 10.1007/s12555-016-0705-3
    [13] ZHARKOV M V, VEREMEENKO K K, ANTONOV D A, et al. Attitude determination using ambiguous GNSS phase measurements and absolute angular rate measurements[J]. Gyroscopy and navigation (Online), 2018, 9(4): 277-286. DOI: 10.1134/s2075108718040090
    [14] DOTY J H, ANDERSON D A, BYBEE T. A demonstration of advanced spinning-vehicle navigation[C]. In Proceedings of the ION NTM, 2004, San Diego, CA, USA.
    [15] KIM J W, KANG H W, HWANG D H, et al. Signal tracking method of GNSS receivers for spinning vehicles[J]. International journal of control, automation and systems, 2012, 10(3): 529-535. DOI: 10.1007/s12555-012-0309-5
    [16] BAHDER T B. Attitude determination from single-antenna carrier-phase measurements[J]. Journal of applied physics, 2002, 91(7): 4677-4684. DOI: 10.1063/1.1448871
    [17] DENG Z L, SHEN Q, DENG Z W. Roll angle measurement for a spinning vehicle based on GPS signals received by a single-patch antenna[J]. Sensors, 2018, 18(10): 3479. DOI: 10.3390/s18103479
    [18] LIU Y, LI H, DU X. Roll attitude measurement technique based on GPS signal power[C]. 2019 IEEE International Conference on Unmanned Systems (ICUS), Beijing, China, 2019.
    [19] HEATON J, GOODFELLOW I, BENGIO Y, et al. Deep learning[J]. Genetic programming and evolvable machines, 2018, 19(1): 305-307. DOI: 10.1007/s10710-017-9314-z
    [20] GRAVES A, GREG W, MALCOLM R, et al. Hybrid computing using a neural network with dynamic external memory[J]. Nature, 2016, 538(7626): 471-476. DOI: 10.1038/nature20101
    [21] BROSSARD M, BARRAU A, BONNABEL S. AI-IMU dead-reckoning[J]. IEEE transactions on intelligent vehicles, 2020, 5(4): 585-595. DOI: 10.1109/TIV.2020.2980758
    [22] TANG H, NIU X, ZHANG T, et al. OdoNet: untethered speed aiding for vehicle navigation without hardware wheeled odometer[J]. IEEE sensors journal, 2022, 22(12): 12197-12208. DOI: 10.1109/JSEN.2022.3169549
    [23] DUBEY A K, KUMAR A, VICENTE G D, et al. Study and analysis of SARIMA and LSTM in forecasting time series data[J]. Sustainable energy technologies and assessments, 2021, 47: 101474. DOI: 10.1016/j.seta.2021.101474
    [24] LIU Y, XU B, CHEN Z K, et al. Detection and mitigation of time synchronization attacks based on long short-term memory neural network[J]. GPS solutions, 2023, 28(1): 46. DOI: 10.1007/s10291-023-01587-2
    [25] 尹玲, 尹京苑, 孙宪坤, 等. 缺失GPS时间序列的神经网络补全[J]. 测绘科学技术学报, 2018, 35(4): 331-336. DOI: CNKI:SUN:JFJC.0.2018-04-001.
    [26] CHEN Q J, ZHANG Q, NIU X J. Estimate the pitch and heading mounting angles of the IMU for land vehicular GNSS/INS integrated system[J]. IEEE transactions on intelligent transportation systems, 2021, 22(10): 6503-6515. DOI: 10.1109/TITS.2020.2993052
    [27] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of machine learning research, 2014, 15(1): 1929-1958. DOI: 10.5555/2627435.2670313
    [28] ARORA S, COHEN N, GOLOWICH N, et al. A convergence analysis of gradient descent for deep linear neural networks[C]. 7th International Conference on Learning Representations, 2019, New Orleans, USA.
    [29] DU S S, LEE J D, LI H C, et al. Gradient descent finds global minima of deep neural networks[C]. 36th International Conference on Machine Learning, 2019, Long Beach, USA.
    [30] DU S S, ZHAI X Y, POCZOS B, et al. Gradient descent provably optimizes over-parameterized neural networks[C]. 7th International Conference on Learning Representations, 2019, New Orleans, USA.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  22
  • HTML全文浏览量:  17
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-15
  • 网络出版日期:  2024-10-29

目录

    /

    返回文章
    返回