Introduction of ICG IDM and technology analysis of GNSS interference detection and localization
-
摘要: GNSS广泛地应用于各行各业,但是存在卫星导航信号落地功率低,极易受到各种有意和无意的电磁干扰影响,会对卫星导航应用造成严重的威胁. 随着卫星导航的广泛应用,卫星导航信号受干扰问题引起了国际的广泛关注. 全球卫星导航系统国际委员会(International Committee on Global Navigation Satellite Systems,ICG)为此成立了专门的卫星导航干扰检测与削弱(IDM)工作组,旨在开展各国在该领域的政策法规、相关技术及IDM系统建设的研讨与交流. 本文介绍和分析了ICG IDM的重要进展及研究态势,并对干扰检测定位理论技术及国内外卫星导航干扰监测系统的研究进展进行了梳理,对深化卫星导航干扰监测的理论与技术研究及保障卫星导航安全具有重要的技术借鉴与研究支撑.Abstract: Global Navigation Satellite System (GNSS) is widely used in all walks of life. However, GNSS signals are very weak and the civilian signal format is known, making it extremely susceptible to various intentional and unintentional electromagnetic interferences, which poses a serious threat to GNSS applications. GNSS interference has attracted widespread international attention, the International Committee on Global Satellite Navigation Systems (ICG) has established a special GNSS interference detection and mitigation (IDM) working group to develop IDM technologies and exchange ideas on IDM system construction. This paper introduces the situation of ICG IDM, and analyzes the research progress of GNSS interference detection and localization technology and IDM systems. It provides important technical reference and research support for deepening the theoretical and technical research on GNSS interference monitoring and ensuring the safety of satellite navigation.
-
Key words:
- ICG IDM /
- GNSS interference /
- detection /
- localization /
- technology development
-
表 1 历届ICG大会的IDM议题重要进展
届数/年份 IDM相关情况 1st/2006 提议制定RNSS IDM计划. 2nd/2007 无线电导航卫星系统频谱的保护对于GNSS至关重要. 因此,应当力求通过国内和国际规章进行适当的频谱保护. 此外,应当尽力采取措施检测和削弱GNSS干扰. 3rd/2008 设立专门议题—频谱保护:IDM. 4th/2009 美国介绍了关于协调本国能力以发现、分析和削弱对GPS及其增强系统的干扰情况. 并介绍美国的国土安全部正在建立国内的传感器网络,以便为保护关键基础设施提供实时监测. 同时说明目前全球没有可检测和削弱干扰的能力,但普遍承认需要有这种能力. 5th/2010 美国题为“发现和抑制对全球定位系统的干扰”的专题介绍了美国为抑制和发现信号干扰所采取的行动. 6th/2011 通过了举办IDM研讨会的提案,并建议每年举办一届研讨会,就IDM专题进行详细深入的讨论. 7th/2012 介绍了第一届IDM研讨会的情况,并建议举办更多的研讨会. 8th/2013 大会成立专门的IDM任务组,中美代表被推荐为任务组联合主席. 9th/2014 GPS奠基人帕金森做了题为“保护定位、导航和授时:美国PNT咨询委员会通过‘保护、强化和增强(PTA)’方案及有关建议”,其目的是为了减少日益增多的GNSS干扰对导航卫星定位、导航和授时(positioning, navigation and timing,PNT)服务带来的影响. 10th/2015 大会上提出IDM工作不仅限于在ICG供应商的讨论,并提议在后续报告各成员国开展保护无线电导航卫星服务频谱以及着手开展检测和削弱GNSS干扰的活动情况. 11th/2016 报告各国的无线电导航卫星服务频谱保护方面的工作. 并建议IDM重点关注基于传感器网络的干扰检测和削弱能力. 12th/2017 大会提议:
1) 邀请ICAO专家在ICG12上报告飞行员卫星导航干扰报告用于干扰检测的情况,主要是各国的试验、步骤或
建议等情况.
2) 各系统供应商也应准备报告,以解释其航空管理部门与GNSS服务供应商就可能的干扰事件的应对机制.13th/2018 大会提议:
1) 鼓励系统供应商与政府参加ITU WP-1C,负责技术研究以及与相关ITU专家协作. 该协作可能会促进WP-1C
框架下更多有关GNSS干扰检测的努力;
2) S组将邀请各国政府及专家在ICG上就各国的民航干扰现状及所做的努力进行报告;在此基础上,讨论进一
步的信息共享及行动计划.14th/2019 大会上形成了一项提案:
制定频谱保护小册子:兼容与频谱保护子工作组将与ICG秘书处协调,利用当前频谱保护研讨会的材料,拟制GNSS/RNSS频谱保护小册子,内容涉及干扰与频谱管理、干扰威胁及当前干扰面临的挑战.15th/2021 对提出的“干扰测试许可及通知”提案草案又进行了探讨,对能否形成正式提案未达成一致意见;提出了“将弹性纳入GNSS干扰检测和削弱中”的提案. 16th/2022 对“干扰测试许可及通知”提案草案又进行了探讨,对于形成正式提案仍未达成一致意见. 17th/2023 对修改后的“干扰测试许可及通知”草案进行了报告;对频谱保护小册子制定情况进行了介绍. 表 2 历届IDM研讨会议题
届数/年份 相关议题 1st/2012 1) GNSS干扰源
2) RNSS频谱保护
3) 现有或未来的信息共享、分发、协作以及标准化2nd/2013 1) 干扰教育材料
2) 干扰上报模板
3) GNSS干扰源排除3rd/2014 1) IDM问卷调查
2) RNSS频谱保护
3) 邻近频段兼容性
4) 联合国成员间的IDM认知和教育4th/2015 1) IDM技术
2) 联合国专家组间的IDM研讨5th/2016 1) 加强GNSS干扰对典型设施的影响分析
2) 联合国范围内加强GNSS干扰对典型设施影响的公共教育6th/2017 1) IDM技术
2) 邻近频段兼容性7th/2018 1) IDM技术
2) 民航GNSS干扰威胁评估8th/2019 1) IDM技术
2) 机场GNSS干扰检测系统
3) 干扰测试9th/2021 1) IDM技术
2) 机场干扰检测技术
3) 干扰测试10th/2022 1) IDM技术
2) 对关键基础设施的影响
3) IDM系统 -
[1] ANDREW WOOD. Newark airport GBAS vulnerable to truckers’ GPS jammers[N/OL]. (2011-01-24)[2023-10-12]. 2011. https://www.ainonline.com/aviation-news/business-aviation/2011-01-25/newark-airport-gbas-vulnerable-truckers-gps-jammers [2] GROMOV K, AKOS D, PULLEN S, et al. GIDL: Generalized interference detection and localization system[C]//The 13th International Technical Meeting of the Satellite Division of The Institute of Navigation, 2000: 447-457. [3] CHEN X, HE D, YAN X Y, et al. GNSS interference type recognition with fingerprint spectrum DNN method[J]. IEEE transactions on aerospace and electronic systems, 2022, 58(5): 4745-4760. DOI: 10.1109/TAES.2022.3167985 [4] JIANG Z. Mitigation of narrow-band interference on software receivers based on spectrum analysis[D]. Canada: University of Calgary, 2005. [5] SUN K, JIN T, YANG D K. A new reassigned spectrogram method in interference detection for GNSS receivers[J]. Sensors, 2015, 15(9): 22167-22191. DOI: 10.3390/s150922167 [6] BASTIDE F, AKOS D, MACABIAU C, et al. Automatic gain control (AGC) as an interference assessment tool[C]//The 16th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS/GNSS 2003), 2003: 2042-2053. DOI: 10.5935/0103-5053.20150119 [7] AKOS D M. Who's afraid of the spoofer? GPS/GNSS spoofing detection via automatic gain control (AGC)[J]. Navigation:journal of the institute of navigation, 2012, 59(4): 281-290. DOI: 10.1002/NAVI.19 [8] LEVIGNE N S. Automatic gain control measurements as a GPS L1 interference detection metric[D]. Boulder: University of Colorado at Boulder, 2019. [9] BALAEI A T, DEMPSTER A G, BARNES J. A novel approach in detection and characterization of CW interference of GPS signal using receiver estimation of C/No[C]//Position, Location, and Navigation Symposium, IEEE/ION, 2006: 1120-1126. DOI: 10.1109/PLANS.2006.1650719 [10] THOMPSON R J R, WU J H, BALAEI A T, et al. Detection of RF interference to GPS using day-to-day C/No differences[C]//International Symposium on GNSS, 2010. [11] ISOZ O, BALAEI A T, AKOS D. Interference detection and localization in GPS L1 band[C]//Institute of Navigation International Technical Meeting, 2010: 925-929. [12] KAR G, MUSTAFA H, WANG Y, et al. Detection of on-road vehicles emanating GPS interference[C]//The 2014 ACM SIGSAC conference on computer and communications security, 2014: 621-632. DOI: 10.1145/2660267.2660336 [13] WARD P. GPS receiver RF interference monitoring, mitigation, and analysis techniques[J]. Navigation, 1994, 41(4): 367-392. DOI: 10.1002/J.2161-4296.1994.TB01886.X [14] LIU Z X, LO S, WALTER T. Characterization of ADS-B performance under GNSS interference[C]//The 33rd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2020), 2020: 3581-3591. DOI: 10.33012/2020.17675 [15] JONÁŠ P, VITAN V. Detection and localization of GNSS radio interference using ADS-B data[C]//2019 International Conference on Military Technologies (ICMT), 2019: 1-5. DOI: 10.1109/MILTECHS.2019.8870034 [16] KAZMIERCZAK J, JOSEPH A, COOK G. Aviation GNSS interference analysis based on ADS-B out data[C]//The 34th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2021), 2021: 1108-1121. DOI: 10.33012/2021.18039 [17] STRIŽIĆ L, AKOS D M, LO S. Crowdsourcing GNSS jammer detection and localization[C]//The 2018 International Technical Meeting of The Institute of Navigation, 2018: 626-641. DOI: 10.33012/2018.15546 [18] NGUYEN H L, GAMBA M, FALLETTI E, et al. Situational awareness: mapping interference sources in real-time using a smartphone APP[J]. Sensors, 2018, 18(12): 4130. DOI: 10.3390/s18124130 [19] CETIN E, THOMPSON R J R, DEMPSTER A G. Passive interference localization within the GNSS environmental monitoring system (GEMS): TDOA aspects[J]. GPS solutions, 2014(18): 483-495. DOI: 10.1007/s10291-014-0393-5 [20] BHATTI J A, HUMPHREYS T E, LEDVINA B M. Development and demonstration of a TDOA-based GNSS interference signal localization system[C]//The 2012 IEEE/ION Position, Location and Navigation Symposium, 2012: 455-469. DOI: 10.1109/PLANS.2012.6236915 [21] QI W K, ZHANG Y, LIU X H. A GNSS anti-spoofing technology based on Doppler shift in vehicle networking[C]//2016 International Wireless Communications and Mobile Computing Conference (IWCMC), 2016: 725–729. DOI: 10.1109/IWCMC.2016.7577146 [22] LI H, LI H, LU M Q. Dual-antenna GNSS spoofing detection method based on Doppler frequency difference of arrival[J]. GPS solutions, 2019, 23(3): 1-14. DOI: 10.1007/s10291-019-0868-5 [23] 张国利, 丁继成, 张尧. 基于GNSS信号时延特征的转发式欺骗干扰检测算法[J]. 无线电工程, 2019, 49(7): 626-630. DOI: 10.3969/j.issn.1003-3106.2019.07.015 [24] LI J Z, ZHU X W, OUYANG M J, et al. Research on multi-peak detection of small delay spoofing signal[J]. IEEE access, 2020(8): 151777-151787. DOI: 10.1109/ACCESS.2020.3016971 [25] LI J Z, LI W Q, HE S F, et al. Research on detection of spoofing signal with small delay based on KNN[C]// IEEE 3rd International Conference on Electronics Technology (ICET), 2020: 625-629. DOI: 10.1109/ICET49382.2020.9119515 [26] BROUMANDAN A, JAFARNIA-JAHROMI A, DEHGHANIAN V, et al. GNSS spoofing detection in handheld receivers based on signal spatial correlation[C]//The 2012 IEEE/ION Position, Location and Navigation Symposium, 2012: 479-487. DOI: 10.1109/PLANS.2012.6236917 [27] CHANG H W, PANG C L, ZHANG L, et al. Rotating single-antenna spoofing signal detection method based on IPNN[J]. Sensors, 2022, 22(19): 7141. DOI: 10.3390/s22197141 [28] WANG F, LI H, LU M Q. GNSS spoofing countermeasure with a single rotating antenna[J]. IEEE access, 2017(5): 8039-8047. DOI: 10.1109/ACCESS.2017.2698070 [29] CHEN J J, XU Y, YUAN H. A New GNSS spoofing detection method using two antennas[J]. IEEE access, 2020(8): 110738-110747. DOI: 10.1109/ACCESS.2020.3002804 [30] ONG J, SO H. Direction of arrival estimation of GNSS signal using dual antenna[J]. Journal of position, navigation, and timing, 2020, 9(3): 215-220. DOI: 10.11003/JPNT.2020.9.3.215 [31] YANG H Y, JIN R M, XU W P, et al. Satellite navigation spoofing interference detection and direction finding based on array antenna[J]. Sensors, 2023, 23(3): 1604. DOI: 10.3390/s23031604 [32] FAN G W, GAN X L, YU B G, et al. Adaptive spoofing suppression algorithm for GNSS based on multiple antennas array[J]. Sensors, 2020, 20(4): 1115. DOI: 10.3390/s20041115 [33] YANG Q, ZHANG Y, TANG C K, et al. A combined antijamming and antispoofing algorithm for GPS arrays[J]. International journal of antennas and propagation, 2019: 1-9. DOI: 10.1155/2019/8012569 [34] ZHANG J Q, CUI X, XU H L. A two-stage interference suppression scheme based on antenna array for GNSS jamming and spoofing[J]. Sensors, 2019, 19(18): 3870. DOI: 10.3390/s19183870 [35] CECCATO M, FORMAGGIO F, LAURENTI N, et al. Generalized likelihood ratio test for GNSS spoofing detection in devices with IMU[J]. IEEE transactions on information forensics and security, 2021(16): 3496-509. DOI: 10.1109/TIFS.2021.3083414 [36] BROUMANDAN A, LACHAPELLE G. Spoofing detection using GNSS/INS/Odometer coupling for vehicular navigation[J]. Sensors, 2018, 18(5): 1305. DOI: 10.3390/s18051305 [37] 刘洋, 李四海, 付强文, 等. 芯片级原子钟辅助的惯性/卫星组合导航系统欺骗检测方法[J]. 性技术学报, 2019, 27(5): 654-660. [38] MEURER M, KONOVALTSEV A, CUNTZ M, et al. Robust joint multi-antenna spoofing detection and attitude estimation using direction assisted multiple hypotheses RAIM[C]//The 25th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2012), 2012. [39] PANY T, FALK N, RIEDL B, et al. GNSS synthetic aperture processing with artificial antenna motion[C]//The 26th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2013), 2013: 3163-3171. DOI: 10.1109/PIERS.2017.8262118 [40] YANG H Y, JIN R M, XU W P, et al. Satellite navigation spoofing interference detection and direction finding based on array antenna[J]. Sensors, 2023, 23(3): 1604. DOI: 10.3390/s23031604