Consistency deception detection technique for GNSS/INS based on open-closed-loop alternation
-
摘要: GNSS与惯性导航系统(inertial navigation system,INS)在车辆、无人机等领域广泛应用,但GNSS接收机容易受到欺骗信号影响,因此本文提出一种利用INS观测量的一致性欺骗检测技术. 惯性器件有着不易受欺骗信号干扰和易产生累计误差的特性,通过开/闭环交替反馈估计误差来构建GNSS/INS组合导航,在开环期间设置欺骗检测窗口,将惯性器件和GNSS得到的加速度、角速度统计检测量进行一致性检测,判断是否存在欺骗. 实验结果证明:当窗口时间为70 s时,检测概率达到99.2%,虚警概率为5.2%.
-
关键词:
- 惯性导航系统(INS) /
- 卫星导航 /
- 欺骗检测 /
- 一致性检测 /
- 开闭环
Abstract: The Global Navigation Satellite System (GNSS) and inertial navigation system (INS) are widely used in fields such as vehicles and drones. However, GNSS receivers are susceptible to deceptive signals. Therefore, this paper proposes a consistency deception detection technique using INS observations. Inertial devices have the characteristics of being less susceptible to deceptive signal interference and prone to cumulative errors. By alternately feeding back estimated errors in an open-closed loop manner, a GNSS/INS integrated navigation system is constructed. During the open-loop period, a deception detection window is established, and the consistency between the statistical detection measurements of the inertial device, acceleration, and angular velocity obtained from GNSS is evaluated to determine the presence of deception. Experimental results demonstrate that with a window time of 70 s, the detection probability reaches 99.2% while the false alarm probability is 5.2%.-
Key words:
- INS /
- GNSS /
- deception detection /
- consistency detection /
- open-closed-loop
-
表 1 LN-200 IMU参数
参考 加速度计 陀螺仪 零偏标准差 $ 0.3\; {\text{mg}} $ $ 1.0 (^\circ ){\text{/h}} $ 低通滤波时间常数 100 s 300 s 随机游走系数 $ 0.02 \;{\text{m/}}{{\text{s}}^{\text{2}}}{\text{/}}\sqrt {{\text{Hz}}} $ $ 0.05 \;{\text{rad/s/}}\sqrt {{\text{Hz}}} $ 表 2 二元检测表
预测真实 $ {H_0} $ $ {H_1} $ $ {H_0} $ TN FP $ {H_1} $ FN TP -
[1] BOGUSPAYEV N, AKHMEDOV D, RASKALIYEV A, et al. A comprehensive review of GNSS/INS integration techniques for land and air vehicle applications[J]. Applied sciences, 2023, 13(8): 4819. DOI: 10.3390/app13084819 [2] GAO Y J, LV Z W, ZHANG L D. Two-step trajectory spoofing algorithm for loosely coupled GNSS/IMU and NIS sequence detection[J]. IEEE access, 2019(7): 96359-96371. DOI: 10.1109/ACCESS.2019.2927539 [3] CHEN C, CHANG G. Low-cost GNSS/INS integration for enhanced land vehicle performance[J]. Measurement science and technology, 2019, 31(3): 035009. DOI: 10.1088/1361-6501/ab52cb [4] GROVES P. Principles of GNSS, inertial, and multi-sensor integrated navigation systems[M]. Engineering, Computer Science, Physics, 2007. [5] FALCO G, PINI M, MARUCCO G. Loose and tight GNSS/INS integrations: comparison of performance assessed in real urban scenarios[J]. Sensors, 2017, 17(2): 255. DOI: 10.3390/s17020255 [6] 李松, 唐小妹, 孙鹏跃, 等. GNSS/INS紧组合最大熵卡尔曼滤波算法[J]. 全球定位系统, 2020, 45(4): 1-8. [7] HE Y, LI J C, LIU J J. Research on GNSS INS & GNSS/INS integrated navigation method for autonomous vehicles: a survey[J]. IEEE access, 2023(11): 79033-79055. DOI: 10.1109/ACCESS.2023.3299290 [8] WU Y, CHEN S, YIN T. GNSS/INS tightly coupled navigation with robust adaptive extended Kalman filter[J]. International journal of automotive technology, 2022, 23(6): 1639-1649. DOI: 10.1007/s12239-022-0142-7 [9] 倪少杰, 李诗扬, 谢郁辰, 等. GNSS/INS超紧组合导航综述[J]. 国防科技大学学报, 2023, 45(5): 48-59. DOI: 10.11887/j.cn.202305006 [10] CURRAN J T, BROUMENDAN A. On the use of low-cost IMUs for GNSS spoofing detection in vehicular applications[C]//Proceedings of International Technical Symposium on Navigation and Timing, 2017: 1-8. [11] BROUMANDAN A, LACHAPELLE G. Spoofing detection using GNSS/INS/Odometer coupling for vehicular navigation[J]. Sensors, 2018, 18(5): 1305. DOI: 10.3390/s18051305 [12] CECCATO M, FORMAGGIO F, LAURENTI N, et al. Generalized likelihood ratio test for GNSS spoofing detection in devices with IMU[J]. IEEE transactions on information forensics and security, 2021(16): 3496-3509. DOI: 10.1109/TIFS.2021.3083414 [13] LO S, CHEN Y H, REID T, et al. Keynote: The benefits of low cost accelerometers for GNSS anti-spoofing[C]//Proceedings of the ION 2017 Pacific PNT Meeting. 2017: 775-796.https://doi.org/10.33012/2017.15109 [14] DONG Y, WANG D, ZHANG L, et al. Tightly coupled GNSS/INS integration with robust sequential Kalman filter for accurate vehicular navigation[J]. Sensors, 2020, 20(2): 561. DOI: 10.3390/s20020561 [15] 刘东亮, 成芳, 沈朋礼, 等. LSTM辅助车载GNSS/INS组合导航算法及性能分析[J]. 全球定位系统, 2023, 48(5): 21-31. DOI: 10.12265/j.gnss.2023111 [16] LIU Y, LI S H, FU Q W, et al. Impact assessment of GNSS spoofing attacks on INS/GNSS integrated navigation system[J]. Sensors, 2018, 18(5): 1433. DOI: 10.3390/s18051433 [17] XU R, DING M Y, QI Y, et al. Performance analysis of GNSS/INS loosely coupled integration systems under spoofing attacks[J]. Sensors, 2018, 18(12): 4108. DOI: 10.3390/s18124108 [18] 吴晓倩, 卢秀山, 王胜利, 等. 一种基于改进自适应卡尔曼滤波的GNSS/INS组合导航算法[J]. 科学技术与工程, 2020, 20(3): 913-917. DOI: 10.3969/j.issn.1671-1815.2020.03.007 [19] JIANG H T, LI T, SONG D, et al. An effective integrity monitoring scheme for GNSS/INS/vision integration based on error state EKF model[J]. IEEE sensors journal, 2022, 22(7): 7063-7073. DOI: 10.1109/JSEN.2022.3154054 [20] LI S, MIKHAYLOV M, PANY T, et al. Exploring the potential of deep learning aided Kalman filter for GNSS/INS integration: a study on 2D simulation datasets[J]. IEEE transactions on aerospace and electronic systems, 2023: 1-10. DOI: 10.1109/TAES.2023.3325791 [21] WU F, LUO H Y, JIA H W, et al. Predicting the noise covariance with a multitask learning model for Kalman filter-based GNSS/INS integrated navigation[J]. IEEE transactions on instrumentation and measurement, 2020(70): 1-13. DOI: 10.1109/TIM.2020.3024357 [22] UENEY M, CLARK D E, JULIER S J. Distributed fusion of PHD filters via exponential mixture densities[J]. IEEE journal of selected topics in signal processing, 2013, 7(3): 521-531. DOI: 10.1109/JSTSP.2013.2257162 [23] YIN Z H, YANG J H, MA Y, et al. A robust adaptive extended Kalman filter based on an improved measurement noise covariance matrix for the monitoring and isolation of abnormal disturbances in GNSS/INS vehicle navigation[J]. Remote sensing, 2023, 15(17): 4125. DOI: 10.3390/rs15174125 [24] MOUSSA M, MOUSSA A, ELHABIBY M, et al. Wheel-based aiding of low-cost imu for land vehicle navigation in GNSS challenging environment[C]//IEEE 92nd Vehicular Technology Conference (VTC2020-Fall), 2020: 1-6. [25] CHEN Q J, ZHANG Q, NIU X J. Estimate the pitch and heading mounting angles of the IMU for land vehicular GNSS/INS integrated system[J]. IEEE transactions on intelligent transportation systems, 2021, 22(10): 6503-6515. DOI: 10.1109/TITS.2020.2993052 [26] ZHAO Y W. Cubature+extended hybrid Kalman filtering method and its application in PPP/IMU tightly coupled navigation systems[J]. IEEE sensors journal, 2015, 15(12): 6973-6985. DOI: 10.1109/JSEN.2015.2469105 [27] 谢钢. GPS原理与接收机设计[M]. 北京: 电子工业出版社, 2017.