基于多系统的GNSS三维水汽层析质量评价方法

A quality evaluation method of 3D water vapor tomography based on multi-GNSS observations

  • 摘要: 本文基于提出的水汽层析廓线评价指标(tomographic profic fit score,TPFS),首次对GPS、北斗卫星导航系统(BeiDou Navigation Satellite System,BDS)、GLONASS和Galileo 4个系统的水汽层析结果进行了精度评估. 结果表明:各GNSS水汽层析解算结果差异较小,最大均方根误差(root-mean-square error,RMSE)差距在11%之内,其中BDS水汽层析表现最好,GLONASS水汽层析表现最差. 相较于GPS、GLONASS、Galileo,BDS在低层区域(2406 m以下)具有更好的层析解算优势. 尤其在底层,BDS与GPS、GLONASS、Galileo的RMSE相比分别改进了3.2%、16.2%、5.2%. 此外,在层析水汽廓线TPFS对比中,BDS平均TPFS最小;在暴雨天气下BDS水汽廓线TPFS最低,相较于GPS、GLONASS、Galileo改进了25.2%、31.5%、32.8%.

     

    Abstract: In this paper, we present an evaluation of the water vapor tomography results from four systems-GPS, BDS, GLONASS, and Galileo in terms of accuracy, using the proposed water vapor tomography profile evaluation index TPFS. The results show that the differences in the water vapor tomography solving results of each GNSS are negligible, with the maximum RMSE difference being within 11%. Among these, BDS performs the best in water vapor tomography, while GLONASS performs the worst. Compared with GPS, GLONASS, and Galileo, BDS has a significant advantage in the lower layer (below 2406m). In particular, in the bottom layer, BDS shows a respective improvement of 3.2%, 16.2%, and 5.2% in RMSE compared to GPS, GLONASS, and Galileo. Furthermore, in the comparison of TPFS of tomography water vapor profiles, BDS has the smallest average TPFS and the lowest TPFS of water vapor profiles under heavy rainfall, which is improved by 25.2%, 31.5%, and 32.8% compared to GPS, GLONASS, and Galileo.

     

/

返回文章
返回