留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

卫星导航中电离层误差校正技术现状与发展

韩喜豪 郑帅勇 杨建雷 靳晓伟 高孟志 黄智刚 李琨 杨鹏

韩喜豪, 郑帅勇, 杨建雷, 靳晓伟, 高孟志, 黄智刚, 李琨, 杨鹏. 卫星导航中电离层误差校正技术现状与发展[J]. 全球定位系统, 2024, 49(2): 111-126. doi: 10.12265/j.gnss.2023105
引用本文: 韩喜豪, 郑帅勇, 杨建雷, 靳晓伟, 高孟志, 黄智刚, 李琨, 杨鹏. 卫星导航中电离层误差校正技术现状与发展[J]. 全球定位系统, 2024, 49(2): 111-126. doi: 10.12265/j.gnss.2023105
HAN Xihao, ZHENG Shuaiyong, YANG Jianlei, JIN Xiaowei, GAO Mengzhi, HUANG Zhigang, LI Kun, YANG Peng. Status and development of the ionospheric error correction techniques in satellite navigation[J]. GNSS World of China, 2024, 49(2): 111-126. doi: 10.12265/j.gnss.2023105
Citation: HAN Xihao, ZHENG Shuaiyong, YANG Jianlei, JIN Xiaowei, GAO Mengzhi, HUANG Zhigang, LI Kun, YANG Peng. Status and development of the ionospheric error correction techniques in satellite navigation[J]. GNSS World of China, 2024, 49(2): 111-126. doi: 10.12265/j.gnss.2023105

卫星导航中电离层误差校正技术现状与发展

doi: 10.12265/j.gnss.2023105
基金项目: 复杂电子系统仿真重点实验室开放基金(614201004012103);卫星导航系统与装备技术国家重点实验室开放项目(CEPNT2022B03);自然资源部国土卫星遥感应用重点实验室开放基金(KLSMNR-202310);天津理工大学校级研究生科研创新实践项目(YJ2217)
详细信息
    作者简介:

    韩喜豪:(2000—)男,主要研究方向为卫星导航中电离层误差校正技术. E-mail: 13012259675@163.com

    郑帅勇:(1991—),男,博士,主要研究方向为星基增强系统的设计及其性能的监测评估、星历星钟误差校正、组合导航等. E-mail: syzheng21@email.tjut.edu.cn

    杨建雷:(1984—),男,博士,高级工程师,主要研究方向为新体制导航信号接收处理算法、导航信号性能监测评估等. E-mail: yangjianlei555@163.com

    通信作者:

    郑帅勇 E-mail: syzheng21@email.tjut.edu.cn

  • 中图分类号: P228.4

Status and development of the ionospheric error correction techniques in satellite navigation

  • 摘要: 电离层误差严重影响着GNSS的定位精度,GPS、BDS、Galileo、GLONASS有不同的电离层误差校正方法. 全文概述了电离层误差校正方法,综述了单频电离层误差校正、双频电离层误差校正及多频电离层误差校正等技术的原理与发展现状. 在单频电离层误差校正技术中总结了增强系统中的电离层误差校正技术、北斗全球电离层延迟修正模型(BeiDou global ionospheric delay correction model, BDGIM)、Klobuchar模型、单频电离层误差校正技术的优化—附加国际参考电离层(international reference ionosphere, IRI)约束模型和NeQuick-G模型;在双频电离层误差校正技术中重点总结了双频消电离层误差、无电离层组合模型及PPP-RTK技术中电离层误差校正方法;在多频电离层误差校正技术中介绍了高阶项改正和地磁场建模对电离层误差校正技术的优化与改进. 最后,对电离层误差校正技术及其改进方法进行了分析,总结了其发展趋势与方向.

     

  • 图  1  电离层网格点垂直延迟求解示意图

    图  2  四点插值算法

    图  3  Kriging法2016年11月4日 10时(GPST) GIVD及GIVE结果

    图  4  Kriging法2016年11月4日 20时(GPST) GIVD及GIVE结果

    图  5  Kriging插值法流程图

    图  6  ZAB2站连续观测电离层延迟网格校正结果

    图  7  BDGIM模型原理图

    图  8  IDW法2016年11月4日10时(GPST) GIVD及GIVE

    图  9  IDW法2016年11月4日20时(GPST) GIVD及GIVE

  • [1] SAĞIR S, ATICI R, AKALIN A, et al. The assessment in terms of QBO of NeQuick 2 model[J]. Egyptian journal of remote sensing and space sciences, 2019, 22(1): 67-72. DOI: 10.1016/J.EJRS.2018.07.004
    [2] 王宁波, 袁运斌, 李子申, 等. 不同NeQuick电离层模型参数的应用精度分析[J]. 测绘学报, 2017, 46(4): 421-429.
    [3] 谢钢. GPS原理与接收机设计[M]. 北京: 电子工业出版社, 2009: 80-85.
    [4] SUN M F, LIU L, YAN W, et al. Performance analysis of BDS B1C/B2a PPP using different models and MGEX products[J]. Survey review, 2022, 55(89): 192-203. DOI: 10.1080/00396265.2022.2081013
    [5] 袁运斌, 李敏, 霍星亮, 等. 北斗三号全球卫星导航系统全球广播电离层延迟修正模型(BDGIM)应用性能评估[J]. 测绘学报, 2021, 50(4): 436-447.
    [6] CHEN L, LI M, HU Z G, et al. Method for real-time self-calibrating GLONASS code inter-frequency bias and improvements on single point positioning[J]. GPS solutions, 2018, 22(4): 1-12. DOI: 10.1007/s10291-018-0774-2
    [7] PAN L, ZHANG X H, GUO F. Characterizing inter-frequency bias and signal quality for GLONASS satellites with triple-frequency transmissions[J]. Advances in space research, 2019, 64(7): 1398-1414. DOI: 10.1016/j.asr.2019.06.038
    [8] CAO X Y, LI J C, ZHANG S J, et al. Uncombined precise point positioning with triple-frequency GNSS singles[J]. Advance in space research, 2019, 63(9): 2745-2756. DOI: 10.1016/J.ASR.2018.03.030
    [9] 陈少鑫. GPS三频电离层误差改正算法研究[D]. 淮南: 安徽理工大学, 2019.
    [10] 金蕾, 匡翠林. 基于地磁场建模的电离层误差二阶项改正方法[J]. 大地测量与地球动力学, 2012, 32(6): 119-122.
    [11] 张鹏. 全球格网电离层模型在单频精密单点定位中的应用研究[D]. 长春: 吉林大学, 2021.
    [12] 张卓轩. 复杂电离层环境下的GLS机载接收机性能评估技术研究[D]. 天津: 中国民航大学, 2022.
    [13] 于耕, 曲歌. 北斗格网电离层模型格网点计算方法研究[J]. 电子技术应用, 2017, 43(6): 15-18.
    [14] ROVIR-GARCIA A, JUAN J M, SANZ J, et al. Accuracy of ionospheric models used in GNSS and SBAS: methodology and analysis[J]. Journal of geodesy, 2016, 90(3): 229-240. DOI: 10.1007/s00190-015-0868-3
    [15] LOPEZ-MARTINEZ M, ALVAREZ J M, LORENZO J M, et al. SBAS/EGNOS for maritime[J]. Journal of marine science and engineering. 2020, 8(10): 764. DOI: 10.3390/JMSE8100764
    [16] 刘钝, 李锐. 卫星导航增强中的电离层扰动影响研究——基于系统可靠性工程的视角[J]. 全球定位系统, 2023, 48(1): 3-13.
    [17] BANVILLE S, HASSEN E, WALKER M, et al. Wide-area grid-based slant ionospheric delay corrections for precise point positioning[J]. Remote sensing, 2022(14): 1073. DOI: 10.3390/rs14051073
    [18] 朱永兴, 谭述森, 杜兰, 等. 顾及粗差影响的全球电离层克里金插值及精度分析[J]. 测绘学报, 2019, 48(7): 840-848.
    [19] 朱永兴, 谭述森, 任夏, 等. GNSS全球广播电离层模型精度分析[J]. 武汉大学学报(信息科学版), 2020, 45(5): 768-775.
    [20] 黄玲, 章红平, 徐培亮, 等. 中国区域VTEC模型Kriging算法研究[J]. 武汉大学学报(信息科学版), 2016, 41(6): 729-737.
    [21] 汤俊, 高鑫, 李垠健, 等. 2018年8月磁暴期间北斗GEO卫星电离层TEC时空变化分析[J]. 测绘学报, 2022, 51(3): 317-326.
    [22] 田睿, 董绪荣. 小波分解与Prophet框架融合的电离层VTEC预报模型[J]. 系统工程与电子技术, 2021, 43(3): 610-622.
    [23] WANG S, WANG D, SUN J R. Artificial neural network-based ionospheric delay correction method for satellite-based augmentation systems[J]. Remote sensing, 2022(14): 676. DOI: 10.3390/rs14030676
    [24] YASYUKEVICH Y V, ZATOLOKIN D, PADOKHIN A, et al. Klobuchar, NeQuick G, BDGIM, GLONASS, IRI-2016, IRI-2012, IRI-Plas, NeQuick2, and GEMTEC ionospheric models: a comparison in total electron content and positioning domains[J]. Sensors, 2023, 23(10): 1424-8220. DOI: 10.3390/s23104773
    [25] CHEN J P, HU X G, TANG C P, et al. SIS accuracy and service performance of the BDS-3 basic system[J]. Science China physics, mechanics and astronomy, 2020, 63(6): 269511. DOI: 10.1007/s11433-019-1468-9
    [26] 郭睿, 黄张裕, 孙瑞, 等. 北斗三号BDGIM模型的适用性分析[J]. 海洋测绘, 2021, 41(4): 61-63.
    [27] YUAN Y B, WANG N B, LI Z S, et al. The BeiDou global broadcast ionospheric delay correction model (BDGIM) and its preliminary performance evaluation results[J]. Navigation, 2019, 66(1): 1-15. DOI: 10.1002/NAVI.292
    [28] CHENG L, GAO W G, BO S, et al. Development of BeiDou satellite-based augmentation system[J]. Navigation-journal of the institute of navigation, 2021, 68(2): 405-417. DOI: 10.1002/NAVI.422
    [29] WANG N B, LI Z S, YUAN Y B, et al. BeiDou Global Ionospheric delay correction model(BDGIM): performance analysis during different levels of solar conditions[J]. GPS solutions, 2021, 25(3): 1-13. DOI: 10.1007/s10291-021-01125-y
    [30] XI K W, WANG X Y. Higher order ionospheric error correction in BDS precise orbit determination[J]. Advances in space research, 2021, 67(12): 4054-4065. DOI: 10.1016/J.ASR.2021.02.002
    [31] 朱永兴. 北斗系统全球电离层建模理论与方法研究[J]. 测绘学报, 2021, 50(5): 710.
    [32] SU K, JIN S G, JIANG J, et al. Ionospheric VTEC and satellite DCB estimated from single-frequency BDS observations with multi-layer mapping function[J]. GPS solutions, 2021, 25(2): 1-17. DOI: 10.1007/s10291-021-01102-5
    [33] ZHANG R, SONG W W, YAO Y B, et al. Modeling regional ionospheric delay with ground-based BeiDou and GPS observations in China[J]. GPS solutions, 2015, 19(4): 649-658. DOI: 10.1007/s10291-014-0419-z
    [34] YANG C, GUO J, GENG T, et al. Assessment and comparison of broadcast ionospheric models: NTCM-BC, BDGIM, and Klobuchar[J]. Remote sensing, 2020, 12(7): 1215. DOI: 10.3390/rs12071215
    [35] WU X L, HU X G, WANG G, et al. Evaluation of COMPASS ionospheric model in GNSS positioning[J]. Advances in space research, 2013(51): 959-968. DOI: 10.1016/J.ASR.2012.09.039
    [36] 谢杰, 姚志成, 刘鑫昌, 等. 双频GPS信号仿真的电离层误差补偿模型研究[J]. 微计算机信息, 2012, 28(5): 133-135.
    [37] WANG X L, LI Y F. Study on adaptability of GPS ionospheric error correction models[J]. Aircraft engineering and aerospace technology:an international journal, 2009, 81(4): 316-322. DOI: 10.1108/00022660910967309
    [38] 刘宸, 刘长建, 冯绪, 等. 适用于不同尺度区域的Klobuchar-like电离层模型[J]. 测绘学报, 2016, 45(S2): 54-63.
    [39] ZHANG Q, LIU Z Y, HU Z G, et al. A modified BDS Klobuchar model considering hourly estimated night-time delays[J]. GPS solutions, 2022, 26(2): 1-13. DOI: 10.1007/s10291-022-01236-0
    [40] WANG N B, LI Z S, YUAN Y B, et al. Ionospheric correction using GPS Klobuchar coefficients with an empirical night-time delay model[J]. Advance in space research, 2019, 63(2): 886-896. DOI: 10.1016/J.ASR.2018.10.006
    [41] 杨玲, 周春元, 苏小宁, 等. 附加IRI模型约束的全球电离层建模及定位精度分析[J]. 同济大学学报(自然科学版), 2021, 49(11): 1606-1613.
    [42] ZHU W, CHEN J Y, ZHANG Q, et al. Mapping of high-spatial-resolution three-dimensional electron density by combing of full-polarimetric SAR and IRI model[J]. Frontiers in earth science, 2020(8): 181. DOI: 10.3389/feart.2020.00181
    [43] MONTENBRUCK O, RODRIGUEZ B G. NeQuick-G performance assessment for space applications[J]. GPS solutions, 2019, 24(1): 1-12. DOI: 10.1007/s10291-019-0931-2
    [44] KIM J, KIM M. NeQuick G model based scale factor determination for using SBAS ionosphere corrections at low earth orbit[J]. Advanced in space research, 2020, 65(5): 1414-1423. DOI: 10.1016/j.asr.2019.11.038
    [45] ARAGON A, ZURN M, ROVIRA-GARCIA A. Galileo ionospheric correction algorithm: an optimization study of NeQuick-G[J]. Radio science, 2020, 54(11): 1156-1169. DOI: 10.1029/2019RS006875
    [46] TIAN Y, LI S H, SHEN H, et al. Comparative analysis of BDGIM, NeQuick-G, and Klobuchar ionospheric broadcast models[J]. Astrophysics and space science, 2022, 367(8): 78. DOI: 10.1007/s10509-022-04109-7
    [47] CIEĆKO A, GRUNWALD G. Klobuchar, NeQuick G, and EGNOS ionospheric models for GPS/EGNOS single-frequency positioning under 6-12 september 2017 space weather events[J]. Applied sciences-basel, 2020, 10(5): 78. DOI: 10.3390/app10051553
    [48] 吴显兵, 阮仁桂. 伽利略电离层改正模型的精度对比分析[J]. 测绘科学, 2015, 40(5): 17-20.
    [49] 韩玲, 王解先, 柳景斌. NeQuick模型算法研究及性能比较[J]. 武汉大学学报(信息科学版), 2018, 43(3): 464-470.
    [50] WANG C, ZHANG T, FAN L, et al. A simplified worldwide ionospheric model for satellite navigation[J]. IEEE transactions on aerospace and electronic systems, 2022, 58(1): 391-405. DOI: 10.1109/taes.2021.3103259
    [51] 韩玲, 王解先, 陈艳玲, 等. 利用GNSS数据结合NeQuick模型优化磁暴期F2层临界频率参数估计[J]. 测绘学报, 2020, 49(1): 14-23.
    [52] CIRO G, ANTONIO A, SALVATORE G. Neustrelitz total electronic content model for galileo performance: a position domain analysis[J]. Sensors, 2022, 26(3): 3766. DOI: 10.3390/s23073766
    [53] 肖勇. 高纬度区域GNSS多系统电离层建模及其精度评估[J]. 全球定位系统, 2023, 48(3): 33-38.
    [54] KIM B C, TININ M V. Potentialities of multi-frequency ionospheric correction in Global Navigation Satellite Systems[J]. Journal of geodesy, 2011, 85(3): 159-169. DOI: 10.1007/S00190-010-0425-Z
    [55] 陈正生, 张清华, 李林阳, 等. 电离层延迟变化自模型化的载波相位平滑伪距算法[J]. 测绘学报, 2019, 48(9): 1107-1118.
    [56] BOLLA P, WON J H. Performance analysis of geometry-free and ionosphere-free code-carrier phase observation models in integer ambiguity resolution[J]. IET radar and navigation, 2018, 12(11): 1313-1319. DOI: 10.1049/IET-RSN.2018.5036
    [57] 李宏宇. 多模多频非差非组合精密单点定位方法研究[D]. 哈尔滨: 哈尔滨理工大学, 2021.
    [58] 高爽. BDS/GNSS多参考站多模多频高精度定位技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2020.
    [59] GAO W, GAO C, PAN S. A method of GPS/BDS/GLONASS combined RTK positioning for middle-long baseline with partial ambiguity resolution[J]. Empire survey review, 2015, 49(354): 212-220. DOI: 10.1179/1752270615Y.0000000047
    [60] 李磊, 徐爱功, 祝会忠, 等. 长距离网络RTK基站间整周模糊度的快速解算[J]. 测绘科学, 2014, 39(10): 22-25.
    [61] 王生朝. 北斗三频模糊度解算方法研究[D]. 徐州: 中国矿业大学, 2015.
    [62] GE Y L, DING S, QIN W J, et al. Performance of ionospheric-free PPP time transfer models with BDS-3 quad-frequency observations[J]. Measurement, 2020, 160: 107836. DOI: 10.1016/j.measurement.2020.107836
    [63] 李博峰, 葛海波, 沈云中. 无电离层组合、Uofc和非组合精密单点定位观测模型比较[J]. 测绘学报, 2015, 44(7): 734-740.
    [64] YAN Z B, ZHANG X H. Assessment of the performance of GPS/Galileo PPP-RTK convergence using ionospheric corrections from networks with different scales[J]. Earth, planets and space, 2022, 74(1): 1-19. DOI: 10.1186/s40623-022-01602-9
    [65] YIN X, CHAI H Z, XU W B, et al. Realization and evaluation of real-time uncombined GPS/Galileo/BDS PPP-RTK in the offshore area of China’s Bohai Sea[J]. Marine geodesy, 2022, 45(6): 577-594. DOI: 10.1080/01490419.2022.2057628
    [66] LI P, CUI B B, HU J H, et al. PPP-RTK considering the ionosphere uncertainty with cross-validation[J]. Satellite navigation, 2022, 3(1): 1-13. DOI: 10.1186/s43020-022-00063-5
    [67] ZHANG X H, REN X D, CHEN J, et al. Investigating GNSS PPP-RTK with external ionospheric constraints[J]. Satellite navigation, 2022, 3(6): 1-13. DOI: 10.1186/s43020-022-00071-5
    [68] 宋伟伟, 何成鹏, 辜声峰. 不同纬度区域电离层增强PPP-RTK性能分析[J]. 武汉大学学报(信息科学版), 2021, 46(2): 1832-1842.
    [69] CAI C S, LIU G, YI Z H, et al. Effect analysis of high-order ionospheric corrections on quad-constellation PPP[J]. Measurement science and technology, 2019, 30(2): 1-16. DOI: 10.1088/1361-6501/aaf555
    [70] 黄令勇, 吕志平, 刘毅锟, 等. 三频BDS电离层延迟改正分析[J]. 测绘科学, 2015, 40(3): 12-15.
    [71] LI J L, YANG Y X, HE H B, et al. Benefits of BDS-3 B1C/B1I/B2a triple-frequency signals on precise positioning and ambiguity resolution[J]. GPS solutions, 2020, 24(4): 1-10. DOI: 10.1007/s10291-020-01016-8
    [72] YAN Z B, ZHANG X H. The performance of three-frequency GPS PPP-RTK with partial ambiguity resolution[J]. Atmosphere, 2022, 13(7): 1014. DOI: 10.3390/atmos13071014
    [73] 陈少鑫, 徐良骥. GPS 电离层折射误差的三阶三频改正模型及精度分析[J]. 测绘通报, 2018(12): 10-14.
    [74] MARQUES H, MONICO G, AQUINO M. RINEX_HO: second-and third-order ionospheric corrections for RINEX observation files[J]. GPS solutions, 2011, 15(3): 305-314. DOI: 10.1007/s10291-011-0220-1
    [75] HAMMER M D, COX G A, BROWN W J. Geomagnetic virtual observatories: monitoring geomagnetic secular variation with the swarm satellites[J]. Earth plants and space, 2021, 73: 1-22. DOI: 10.1186/s40623-021-01357-9
    [76] TU R, ZHANG P F, ZHANG R, et al. Modeling and performance analysis of precise time transfer based on BDS triple-frequency un-combined observations[J]. Journal of geodesy, 2019, 93(6): 837-847. DOI: 10.1007/s00190-018-1206-3
    [77] LI D H, MI J Z, CHENG P F, et al. A cycle slip repair method against ionospheric effects and observations noises for BDS triple-frequency undifferenced phases[J]. Sensors, 2020, 20(10): 1-21. DOI: 10.3390/s20102819
    [78] ZHANG R C, GAO C F, WANG Z B, et al. Ambiguity resolution for long baseline in a network with BDS-3 quad-frequency ionosphere-weighted model[J]. Remote sensing, 2022, 14(7): 1-18. DOI: 10.3390/rs14071654
    [79] AN X D, MENG X L, CHEN H, et al. Modelling global ionosphere based on multi-constellation GNSS observations and IRI model[J]. Remote sensing, 2020, 12(3): 1-19. DOI: 10.3390/rs12030439
  • 加载中
图(9)
计量
  • 文章访问数:  390
  • HTML全文浏览量:  54
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-10
  • 网络出版日期:  2024-03-26

目录

    /

    返回文章
    返回