Abstract:
In order to maintain the geosynchronous characteristics of geostationary earth orbit (GEO) satellites, frequent orbital maneuvers are required. Timely and accurate dynamic monitoring of the state of satellite orbit maneuvers is helpful for repairing the true satellite orbit, so that it can still provide basic orbital parameters during maneuvering. In this paper, 12 historical maneuvers of each of the two GEO satellites of BeiDou-3 Navigation Satellite System (BDS-3) are analyzed using a satellite orbit monitoring model based on the principle of time differential velocity measurement. The results show that the station network of different spatial scales selected in this paper can monitor the maneuver period and orbital dynamic variation of the C59 satellite in real time, and the monitoring results are basically consistent. In addition, the station networks of different spatial scales selected in this paper can accurately detect the maneuver period of the C60 satellite, but when monitoring its orbital state in real time, the monitoring results of the station network with a larger spatial scale are better.