BDS-3 dynamic data characteristics for new signals of B1C/B2a and PPP accuracy analysis
-
摘要: 通过载噪比(CNR)、数据完整率、伪距与载波相位观测值噪声和伪距多路径效应四个指标对北斗三号卫星导航系统(BDS-3)新频点B1C/B2a车载动态数据的特性进行了分析,测试了BDS-3新频点动态精密单点定位(PPP)的性能,并与其它全球卫星导航系统(GNSS)进行了对比. 试验结果表明,BDS-3新频点B2a平均CNR优于北斗卫星导航系统(BDS)其它频率,但略差于GPS L5;相较于其它GNSS,BDS数据完整率相对较高,其中BDS-3 B2a新频点数据完整率最高;BDS-3 B2b伪距观测值噪声最小,B1C和B2a伪距观测值噪声约为B2b信号的3倍,但不同频率相位观测值噪声处于同一量级;对于伪距多路径而言,BDS-3 B1C/B2a 信号略小于B2b 信号. 总体而言,GPS L5信号抑制多路径效应的能力最强. 在动态PPP性能方面,BDS-3 B1C/B2a双频组合动态PPP定位精度最优,其三维(3D)均方根(RMS)误差为0.439 m,相比BDS B1I/B3I、GPS L1/L2、GLONASS G1/G2和Galileo E1/E5a双频组合PPP,其精度改善率分别为49%、56%、81%和42%.
-
关键词:
- 动态 /
- 北斗卫星导航系统(BDS) /
- 新频点 /
- 数据质量 /
- 精密单点定位(PPP)
Abstract: The vehicle dynamic data characteristics for BDS-3 new signals of B1C/B2a are analyzed using four indices, i.e. carrier noise ratio (CNR), data integrity rate, observation noise and multipath. The kinematic precise point positioning (PPP) performance for BDS-3 new signals is also tested and compared with the other GNSS. The test results show that the average CNR of BDS-3 B2a new frequency is better than those of the other BDS frequencies, but slightly worse than that of GPS L5. The data integrity rate of BDS is relatively higher compared with the other GNSS. Further, the data integrity rate of the BDS-3 B2a new frequency is the highest. The noise of BDS-3 pseudorange observation at B2b frequency is the lowest, and the pseudorange observation noise at B1C and B2a frequencies is about three times of that of the B2b signal. However, the noise of phase observations at different frequencies is in the same level. For pseudorange multipath, the BDS-3 B1C/B2a signal is slightly smaller than the B2b signal, and overall, the GPS L5 signal has the strongest ability to suppress the multipath. In terms of kinematic PPP performance, the BDS-3 B1C/B2a dual-frequency combined kinematic PPP achieves the best positioning accuracy with a three-dimensional root mean square error of 0.439 m. Compared with the BDS B1I/B3I, GPS L1/L2, GLONASS G1/G2, and Galileo E1/E5a dual-frequency combined PPP, the accuracy improvement rates are 49%、56%、81% and 42% respectively. -
表 1 各GNSS系统各频率伪距和载波相位观测值残差RMS 统计值
m 卫星系统 频率 伪距残差RMS 相位残差RMS BDS B1C 0.119 0.023 B2a 0.086 0.021 B2b 0.035 0.021 B1I 0.134 0.022 B2I 0.089 0.017 B3I 0.072 0.018 Galileo E1 0.118 0.022 E5a 0.075 0.019 E5b 0.081 0.020 E5 0.051 - E6 0.088 0.021 GPS L1 0.172 0.023 L2 0.205 0.021 L5 0.085 0.018 GLONASS G1 0.271 0.025 G2 0.326 0.024 G3 0.098 0.021 表 2 PPP参数估计具体处理策略
项目 处理策略 电离层延迟 估计 对流层延迟 模型改正干延迟,估计湿延迟 卫星截止高度角 10° 卫星轨道与钟差 GFZ精密产品 天线相位偏差 igs14.atx 天线相位缠绕 模型改正 地球自转效应 模型改正 相对论效应 模型改正 潮汐 模型改正 接收机坐标 随机游走 接收机钟差 白噪声 模糊度 浮点解 参数估计方法 卡尔曼滤波 观测值定权方法 高度角与CNR联合定权 表 3 各GNSS系统动态PPP定位误差RMS统计值
m 系统 E N U 3D BDS(b) 0.15 0.17 0.38 0.44 BDS(a) 0.42 0.25 0.72 0.87 GPS 0.47 0.72 0.51 1.00 Galileo 0.07 0.09 0.75 0.76 GLONASS 0.87 0.27 2.18 2.36 -
[1] 郭树人, 蔡洪亮, 孟轶男, 等. 北斗三号导航定位技术体制与服务性能[J]. 测绘学报, 2019, 48(7): 810-821. [2] 中国卫星导航系统管理办公室. 北斗卫星导航系统空间信号接口控制文件: 公开服务信号B2A (1.0 版): BDS-SIS- ICD-B2A-1.0[S]. 北京: 中国卫星导航系统管理办公室, 2017. [3] 中国卫星导航系统管理办公室. 北斗卫星导航系统空间信号接口控制文件: 公开服务信号B1C ( 1.0 版): BDS-SIS- ICD-B1C-1.0[S]. 北京: 中国卫星导航系统管理办公室, 2017. [4] 伊珣, 徐爱功, 唐龙江. 利用Anubis检核BDS观测数据质量[J]. 导航定位学报, 2021, 9(5): 134-141,162. DOI: 10.3969/j.issn.2095-4999.2021.05.019 [5] ZHANG Z T, LI B F, NIE L W, et al. Initial assessment of BeiDou-3 Global Navigation Satellite System: signal quality, RTK and PPP[J]. GPS solutions, 2019, 23(4): 1-12. DOI: 10.1007/s10291-019-0905-4 [6] HUANG C, SONG S L, CHENG Q M, et al. Preliminary analysis of BDS-3 data based on iGMAS[J]. Chinese astronomy and astrophysics, 2019, 43(3): 390-404. DOI: 10.1016/j.chinastron.2019.01.001 [7] 贺延伟, 贾小林, 刘家龙, 等. BDS-3与BDS-2基本服务性能对比分析[J]. 导航定位学报, 2022, 10(1): 20-28,75. DOI: 10.3969/j.issn.2095-4999.2022.01.003 [8] ZHU Y X, ZHENG K, CUI X Q, et al. Preliminary analysis of the quality and positioning performance of BDS-3 global interoperable signal B1C&B2a[J]. Advances in space research, 2021, 67(8): 2483-2490. DOI: 10.1016/j.asr.2021.01.045 [9] 慕仁海, 党亚民, 许长辉. BDS-3新频点单点定位研究[J]. 测绘通报, 2021(3): 12-17. DOI: 10.13474/j.cnki.11-2246.2021.0070 [10] 谷世铭. BDS-3精密单点定位模型优化及偏差处理[D]. 青岛: 山东科技大学, 2020. [11] 李树文, 王潜心, 龚佑兴. 北斗三号卫星新信号数据质量分析[J]. 合肥工业大学学报(自然科学版), 2021, 44(8): 1111-1117. [12] 刘万科, 史翔, 朱锋, 等. 谷歌NEXUS 9智能终端原始GNSS观测值的质量分析[J]. 武汉大学学报(信息科学版), 2019, 44(12): 1749-1756. [13] ZHANG X H, WU M K, LIU W K, et al. Initial assessment of the COMPASS/BeiDou-3: new-generation navigation signals[J]. Journal of geodesy, 2017, 91(10): 1225-1240. DOI: 10.1007/s00190-017-1020-3 [14] CAI C S, GAO Y, PAN L, et al. Precise point positioning with quad-constellations: GPS, BeiDou, GLONASS and Galileo[J]. Advances in space research, 2015, 56(1): 133-143. DOI: 10.1016/J.ASR.2015.04.001