结合多特征HSV变换的高光谱影像林地提取方法

Forestland extraction method of hyperspectral image combined with multi-feature HSV transform

  • 摘要: 当前林地提取的方式主要是选择样本通过监督或半监督进行的,效率较低,为此本文提出一种结合多特征的HSV变换高光谱影像林地提取方法.该方法首先对原影像进行相关校正处理,然后利用归一化植被指数(NDVI)和主成分分析(PCA)得到合成影像,最后利用HSV变换通过设置色彩值范围对影像进行色彩分割提取林地信息.结果显示,使用本文方法对高光谱林地的提取精度可以达到96.29%,说明了本文方法的有效性.

     

    Abstract: At present, the method of extraction forestland is mainly based on selecting samples by supervised or semi-supervised, and the efficiency is low. For this reason, this paper proposes a multi-feature HSV transform hyperspectral image forestland extraction method. We first performs relation correction processing of original remote sensing images.Then use the parameters of normalized vegetation index (NDVI) and principal component analysis (PCA) to obtain the composite images. Finally, HSV transform is used to extract forest land information through color segmentation of image by setting color value range. The results show that the extraction accuracy of the high-resolution forestland can reach 96.29%, and indicated the effectiveness of the method.

     

/

返回文章
返回