Accuracy analysis of BDS-2/BDS-3 standard point positioning
-
摘要: 北斗三号(BDS-3)基本系统于2018年底开始提供全球服务.通过处理37个全球GNSS服务组织(IGS)多模实验跟踪网(MGEX)观测站90天北斗数据,评估了北斗二号(BDS-2)和BDS-3在全球范围内的可见卫星数、几何精度衰减因子(GDOP)和单频伪距单点定位精度,分析了BDS-2/BDS-3组合对BDS-2、BDS-3单系统空间几何构型、伪距单点定位(SPP)精度的改善程度.结果表明,BDS-3的空间几何构型较BDS-2有明显的提升,定位精度在东方向、北方向和高程方向分别为1.490、2.610、5.238 m(RMS),相较于BDS-2分别提高了58%、1%、24%.BDS-2/BDS-3组合在东方向、北方向和高程方向分别为1.45、2.36、4.90 m(RMS),较BDS-2与BDS-3单系统分别提高了59%、11%、29%,以及3%、10%、6%.并且BDS-2/BDS-3组合明显削弱了BDS-2定位精度与地理经度相关的边缘效应.Abstract: The third-generation of Chinese BeiDou Satellite System (BDS-3) has been providing global service since the end of 2018. In order to evaluate the accuracy of BDS-2 and BDS-3 standard point positioning (SPP) as well as visible satellites and GDOP, 90 days of BDS-2 and BDS-3 data collected from 37 globally distributed International GNSS Service (IGS) Multi-GNSS Experiment network (MGEX) stations was used to perform data analysis. Results show that: 1) The geometry of BDS-3 is significantly improved when compared with that of BDS-2 by analyzing the visible satellites and GDOP. 2) The RMS of BDS-3 SPP error is 1.490, 2.610, 5.238m in the east, north and up directions, which is improved by 58%, 1%, and 24% respectively when compared with that of BDS-2. 3) The RMS of combined BDS-2/BDS-3 SPP error is 1.45, 2.36, 4.90 m, which is improved by 59%, 11% 29% when compared with the BDS-2 results. 4) The RMS of combined BDS-2/BDS-3 SPP error is improved by 3%, 10%, 6% when compared with the BDS-3 results. We also find that the combination of BDS-2 and BDS-3 weakens the marginal effect of BDS-2 SPP which is related to the geographical longitude.
-
Key words:
- BDS-2 /
- BDS-3 /
- standard point positioning /
- GDOP /
- accuracy
-
[1] 中国卫星导航系统管理办公室. 北斗卫星导航系统发展报告(3.0)版中文版[R/OL]. [2018-12-01]. http://www.BDS.gov.cn/xt/gfxz/201812/P02018122 7529525428336.pdf. [2] 庄钊文, 王飞雪, 欧钢, 等. 北斗卫星导航系统安全和完好性监测现状与发展[J]. 科技导报, 2017, 35(10): 13-18. [3] ZHANG X H. WU M K. LIU W K, et al. Initial assessment of the COMPASS/BeiDou3: newgeneration navigation signals[J]. Journal of Geodesy, 2017, 91(10): 1225-1240.DOI: 10.1007/S00190-017-1020-3. [4] 唐卫明, 徐坤, 金蕾,等, 北斗/GPS组合伪距单点定位性能测试和分析[J]. 武汉大学学报(信息科学版), 2015, 40(4): 529-533. [5] 安向东. GPS与北斗伪距单点定位性能对比分析[J]. 全球定位系统, 2014,39(3): 8-14. [6] 杨武召, 阮仁桂, 孙中苗, 等. BDS-3伪距定位精度分析[C]//北京:第十届中国卫星导航年会,2019. [7] 景一帆, 杨元喜, 曾安敏,等. 北斗区域卫星导航系统定位性能的纬度效应[J]. 武汉大学学报(信息科学版), 2017,42(9):1243-1248. [8] 周仁宇,胡志刚,苏牡丹,等.北斗全球系统广播电离层模型性能初步评估[J].武汉大学学报(信息科学版).2019,44(10):1457-1464. [9] 杨元喜, 许扬胤, 李金龙, 等. 北斗三号系统进展及性能预测——试验验证数据分析[J]. 中国科学(地球科学), 2018,48(5):584-594. [10] ZHANG Y Z, KUBO N, CHEN J P, et al. Initial positioning assessment of BDS new satellites and new signals [J]. Remote Sensing, 2019, 11(1): 1320. DOI: 103390/rs11111320. [11] DAI P P, GE Y L, QIN W J,et al .BDS-3 time group delay and its effect on standard [J]. Remote Sensing, 2019, 11(15):1819. DOI: 10.3390/rs11151819. [12] MONTENBRUCK O, STEIGENBERGER P, PRANGE L, et al. The Multi-GNSS Experiment (MGEX)[JP] of the International GNSS Service (IGS) — achievements, prospects and challenges[J]. Advances in Space Research, 2017, 59(7):1671-1697.DOI: 10.1016/j.asr.2017.01.011. [13] 战兴群,苏先礼. GNSS完好性监测及辅助性能增强技术[M].北京:科学出版社,2016:25-27. [14] CSNO. BDS navigation satellite system signal in space interface control document, open service signal B1I (version 30)[S/OL]. [2019-02-01]. http://www.BDS.gov.cn/xt/gfxz/201902/P02019022759 3621142475.pdf. [15] 戴伟, 焦文海, 贾小林. Compass导航卫星频间偏差参数使用方法[J]. 测绘科学技术学报, 2009, 26(5):367-369,374. [16] 范磊, 钟世明, 欧吉坤, 等. COMPASS与GPS伪距单点定位精度分析[C]// 第四届中国卫星导航学术年会, 2013. [17] SAASTAMOINEN J . Atmospheric correction for the troposphere and stratosphere in radio ranging satellites[J]. The Use of Artificial Satellites for Geodesy,1972,15(6): 247-251.DOI.10.1029/GM015p0 247. [18] 李征航,黄劲松,GPS测量与数据处理.[M]. 2版. 武汉: 武汉大学出版社,2010. [19] SHI C, ZHAO Q L, GENG J H, et al. Recent development of PANDA software in GNSS data processing[J]. Proceedings of SPIE, 2008, 7285(1):231-249.DOI: 10.1117/12.816261.
点击查看大图
计量
- 文章访问数: 1119
- HTML全文浏览量: 174
- PDF下载量: 218
- 被引次数: 0