基于交互式多模型的水下目标定位跟踪方法

An interactive multiple model-based method for underwater target localization and tracking

  • 摘要: 针对实际水下应用中目标运动状态复杂、频繁切换的问题,本文提出了一种基于交互式多模型(interacting multiple model,IMM)滤波的水下目标定位与跟踪方法,以提高系统在多种运动形式下的鲁棒性与适应能力. 该方法联合采用匀速(constant velocity,CV)和匀速转向(constant turning,CT)两种典型水下目标运动模型,并融合不同时刻的观测数据,通过IMM框架实现多模型间的动态切换与联合估计. 进一步,针对波达方向和到达时间(direction of arrival-time of arrival,DOA-TOA)估计、结合相邻脉冲到达时间差(time difference of arrival,TDOA)的DOA-TOA-TDOA估计两类水声观测条件,设计了基于组合运动模型的IMM-无迹卡尔曼滤波(unscented Kalman filter,UKF)水下定位与跟踪算法. 蒙特卡洛仿真结果表明,所提方法在多模型适应性与定位精度方面优于传统单一模型算法. 此外,通过对实测水下观测数据的处理与分析,验证了该算法在实际水声工程场景中的有效性与可行性.

     

    Abstract: To address the challenges posed by complex and frequently changing motion patterns of underwater targets in practical applications, this paper proposes an underwater target localization and tracking method based on the interactive multiple model (IMM) filtering framework. The method integrates two typical motion models of underwater targets—constant velocity (CV) and constant turn (CT)—and fuses observations from different time instants to achieve dynamic model switching and joint state estimation via the IMM framework. Furthermore, estimation under two types of acoustic measurement conditions, namely direction of arrival-time of arrival (DOA-TOA)、time difference of arrival (TDOA) and DOA-TOA-TDOA, an IMM-unscented Kalman filter (UKF)-based localization and tracking algorithm is designed using the combined motion model. Simulation results demonstrate that the proposed method outperforms traditional single-model algorithms in terms of adaptability to multiple motion patterns and localization accuracy. In addition, the effectiveness and feasibility of the algorithm are further validated through processing and analysis of real underwater acoustic observation data in practical engineering scenarios.

     

/

返回文章
返回