基于同构IMU辅助增强的视觉惯性里程计优化方法

An optimization method for visual-inertial odometry enhanced by multiplehomogeneous IMUs

  • 摘要: 视觉惯性导航系统(visual inertial navigation system,VINS)融合了视觉信息和惯性测量单元(inertial measurement unit,IMU)数据,被广泛应用于智能载体的精密位姿估计,如无人机、无人车等,是一种低廉且易用的位姿估计手段. 但由于IMU的器件误差和部分场景视觉特征不足等问题,传统VINS存在严重的导航误差漂移的问题. 近年来,随着硬件制造技术的成熟与传感器成本和尺寸的减小,融合多个同构传感器实现状态估计逐渐变得可能. 本文提出了一种集成多个IMU的视觉惯性里程计(visual inertial odometry,VIO),以实现低漂移的连续位姿估计. 具体而言,基于经典多状态约束卡尔曼滤波(multi-state constraint Kalman filter,MSCKF)框架下,通过扩展和冗余的IMU状态,并利用IMU之间的刚体旋转和平移来约束多个IMU,从而有效抑制系统漂移. 我们通过真实车辆场景的实验验证了所提出方法的优势. 结果表明,相比单IMU下的VIO,加入辅助IMU后的位置、速度、姿态误差均有所改善,在东(E)和北(N)方向误差中位数分别减小了64%和69%,速度的E、N、天(U)方向精度分别提升了66%、63%、67%,航向角平均绝对误差降低了62%. 同时,冗余IMU的加入能够显著提升陀螺与加速度零偏的可观测性.

     

    Abstract: Visual-Inertial Navigation Systems (VINS) integrate visual information with inertial measurement unit (IMU) data, offering a cost-effective and practical solution for precise pose estimation in intelligent platforms such as unmanned aerial vehicle (UAV) and autonomous ground vehicle. However, conventional VINS suffers from significant drift due to IMU sensor errors and visual feature insufficiencies in certain environments. With advances in hardware manufacturing and the reduction in sensor cost and size, state estimation using multiple homogeneous sensors has become increasingly feasible. This paper proposes a multi-IMU visual-inertial odometry (VIO) framework to achieve low-drift continuous pose estimation. Specifically, we extend the classical multi-state constraint filter (MSCKF) by incorporating redundant IMU states and leveraging rigid-body rotational and translational constraints between multiple IMUs to suppress system drift effectively. Real-world vehicle experiments validate the proposed approach, demonstrating significant improvements over single-IMU VIO. Compared to the single-IMU case, our VIO framework reduces median position errors by 64% and 69% in the east (E) and north (N) directions, respectively. Velocity estimation accuracy improves by 66%, 63%, and 67% along the ENU axes, while the mean absolute yaw error decreases by 62%. Additionally, the incorporation of redundant IMUs significantly enhances the observability of gyroscope and accelerometer biases.

     

/

返回文章
返回