多源星基GNSS-R地表反射率全球差异性评估及其对土壤湿度的响应

Global assessment of surface reflectivity from multi-source spaceborne GNSS-R and its response to soil moisture

  • 摘要: 星载全球导航卫星系统反射测量(Global Navigation Satellite System Reflectometry,GNSS-R)技术已经成为大范围监测地表土壤湿度的一个有效手段. 旋风全球导航卫星系统(Cyclone Global Navigation Satellite System,CYGNSS)以高时空分辨率的优势广泛应用于土壤湿度反演研究. 2024年9月,土壤湿度主被动(soil moisture active passive,SMAP)遥感卫星首次公开了GNSS-R反射率数据. 本文首先对多源GNSS-R地表反射率、SMAP卫星土壤湿度产品和第五代全球气候和天气再分析数据集(fifth generation ECMWF atmospheric reanalysis of the global climate, ERA5)土壤湿度产品进行时空匹配;其次讨论不同地理纬度、不同土地类型、不同植被光学厚度情况下CYGNSS和SMAP的星基GNSS-R地表反射率在全球范围内的差异性,并提出了基于幂律函数的经验公式模型对它们的差异进行了修正;最后分析了星基GNSS-R地表反射率对土壤湿度的响应. 结果表明:CYGNSS在38°S~38°N数据量充足且分布较均匀,有利于开展地表参数反演,而SMAP数据量偏少,但能覆盖中高纬度地区,二者具有互补性;在不同地理纬度、土地类型、植被光学厚度情况下,CYGNSS和SMAP的地表反射率在数值上存在非线性差异,这与二者接收到的信号频率和极化方式不同有很大关系,前者接收的是GPS L1频段的左旋圆极化反射信号,后者接收的是GPS L2C频段的水平和垂直线性极化反射信号,可用幂律函数很好地修正它们之间的差异;CYGNSS和SMAP的地表反射率与土壤湿度整体上存在较好的相关性. 研究结果有利于未来开展多源星基GNSS-R反射率联合反演地表环境参数.

     

    Abstract: Satellite-based Global Navigation Satellite System Reflectometry (GNSS-R) technology has become an effective tool for large-scale monitoring of soil moisture. The Cyclone Global Navigation Satellite System (CYGNSS), with its high temporal and spatial resolution, is widely applied in soil moisture inversion research. In September 2024, the Soil Moisture Active Passive (SMAP) satellite publicly released its GNSS-R reflectivity data for the first time. This study first performs spatiotemporal matching of multi-source GNSS-R surface reflectivity data, SMAP soil moisture products, and the ECMWF Reanalysis V5 (ERA5) soil moisture dataset. It then discusses the global differences in surface reflectivity of CYGNSS and SMAP GNSS-R under varying geographical latitudes, land types, and vegetation optical thicknesses. An empirical formula based on a power-law function is proposed to correct the differences between them. Finally, the response of satellite-based GNSS-R surface reflectivity to soil moisture is analyzed. The results show that CYGNSS data is abundant and evenly distributed between 38°S and 38°N, making it favorable for surface parameter inversion, while SMAP data is relatively sparse but covers middle to high latitudes, indicating their complementarity. Under different geographical latitudes, land types, and vegetation optical thicknesses, CYGNSS and SMAP exhibit nonlinear differences in surface reflectivity. These differences are closely related to the signal frequency and polarization modes received by the two systems. CYGNSS receives left-hand circularly polarized signals in the GPS L1 band, while SMAP receives horizontal and vertical linearly polarized signals in the GPS L2C band, and a power-law function can effectively correct the differences between them. Overall, the surface reflectivity from both CYGNSS and SMAP shows a good correlation with soil moisture. The findings of this study are beneficial for future multi-source satellite-based GNSS-R reflectivity joint inversions of surface environmental parameters.

     

/

返回文章
返回