中国天目一号星座多GNSS反射测量土壤湿度产品性能验证

Performance validation of soil moisture products from the Chinese Tianmu-1 constellation multi-GNSS reflectometry

  • 摘要: 天目一号(Tianmu-1)掩星气象探测星座是中国首个以商业化模式建设的低轨气象卫星系统,搭载了全球导航卫星系统掩星探测仪(GNOS-M),能够兼容接收北斗导航卫星系统(BeiDou Navigation Satellite System, BDS)、GPS、Galileo和GLONASS以及准天顶卫星系统(Quasi-Zenith Satellite System, QZSS)的反射信号. 本研究对10颗Tianmu-1 GPS-R/BDS-R/Galileo-R/GLONASS-R全球土壤湿度产品进行了首次综合评估,采用4个验证数据集(第五代欧洲中期天气预报中心再分析数据(fifth generation ECMWF atmospheric reanalysis of the global climate,ERA5)、土壤湿度和海洋盐度(soil moisture and ocean salinity, SMOS)、土壤水分主动被动观测(soil moisture active passive, SMAP)和旋风全球导航卫星系统(Cyclone Global Navigation Satellite System, CYGNSS))作为参考数据,对Tianmu-1 01~10共10颗卫星的土壤湿度产品进行了对比验证,通过4个精度评价指标(均方根误差(root mean squared error, RMSE)、偏差(Bias)、相关系数(correlation coefficient,CC)和无偏均方根误差(unadjusted bias root mean squared error,ubRMSE))综合评估了Tianmu-1 L2土壤湿度产品. 结果表明,Tianmu-1 GNOS-M GNSS-R土壤湿度与ERA5、SMOS、SMAP和CYGNSS土壤湿度产品总体上来说具有良好的一致性, Tianmu-1 GNOS-M GPS-R/BDS-R/Galileo-R/GLONASS-R在土壤湿度的范围为0~0.7 cm3/cm3时,其概率密度函数(probability density function, PDF)图与ERA5、SMOS、SMAP和CYGNSS土壤湿度产品的PDF图总体变化趋势较为一致,显示出较高一致性,其中与SMAP和CYGNSS 土壤湿度产品一致性最好;Tianmu-1 GNOS-M GPS-R/BDS-R/Galileo-R在不同时间土壤湿度值的RMSE最大不超过0.3 cm3/cm3;在不同植被覆盖类型下,Tianmu-1的4种反射信号反演性能差异较小,整体上来看,当4个验证数据集作为参考数据时最优RMSE、CC和ubRMSE能分别达到0.001 cm3/cm3,0.999和0.003 cm3/cm3,Tianmu-1 GNOS-M GPS-R/BDS-R/Galileo-R/GLONASS-R土壤湿度与SMAP和CYGNSS土壤湿度产品吻合最好,其次是SMOS_SA(升轨)和SMOS_SD(降轨)土壤湿度产品,验证了Tianmu-1 GNOS-M L2级土壤湿度产品算法的准确性和初步反演全球土壤湿度的能力. 本文首次证明了使用多GNSS反射信号反演全球土壤湿度的可行性,显示了多GNSS反射应用的优势,为进一步理解和优化Tianmu-1全球土壤湿度反演的精度、时空分辨率和可靠性提供了重要参考.

     

    Abstract: Tianmu-1 is China’s first commercially built low orbit meteorological satellite system, equipped with the GNSS occultation sounder(GNOS-M), which is compatible with receiving reflected signals from the four major GNSS including BeiDou Navigation Satellite System(BDS), GPS, Galileo and GLONASS, as well as the Quasi-Zenith Satellite System(QZSS). This study conducts the first comprehensive evaluation of ten Tianmu-1 GPS-R/BDS-R/Galileo-R/GLONASS-R global soil moisture products. Four validation datasets are used, including the fifth generation European Centre for Medium-Range Weather Forecasts reanalysis data(ERA5), Soil Moisture and Ocean Salinity(SMOS), Soil Moisture Active and Passive Observations(SMAP), and Cyclone Global Navigation Satellite System(CYGNSS). These datasets were used as reference data for comparative verification of the soil moisture products of Tianmu-1 01~10 satellites. The Tianmu-1 L2 soil moisture products are comprehensively evaluated using four accuracy evaluation indicators (root mean square error(RMSE), Bias, correlation coefficient(CC), and unbiased root mean square error(ubRMSE)). The results show that Tianmu-1 GNOS-M GNSS-R soil moisture had good consistency with ERA5, SMOS, SMAP, and CYGNSS soil moisture products overall. When Tianmu-1 GNOS-M GPS-R/BDS-R/Galileo-R/GLONASS-R has a soil moisture range of 0~0.7 cm3/cm3, its probability density function(PDF) plot is generally consistent with the PDF plots of ERA5, SMOS, SMAP, and CYGNSS soil moisture products, showing a high degree of consistency. Among them, the consistency with SMAP and CYGNSS soil moisture products is the best; The maximum RMSE of daily soil moisture values for Tianmu-1 GNOS-M GPS-R/BDS-R/Galileo-R shall not exceed 0.3 cm3/cm3; Under different vegetation cover types, there is little difference in the retrieval performance of Tianmu-1’s four reflection signals. Overall, when the four validation datasets are used as reference data, the optimal RMSE, CC, and ubRMSE can reach 0.011 cm3/cm3, 0.001 cm3/cm3, 0.999 and 0.003 cm3/cm3, respectively. Tianmu-1 GNOS-M GPS-R/BDS-R/Galileo-R/GLONASS-R soil moisture has the best agreement with SMAP and CYGNSS soil moisture products, followed by SMOS-SA (ascending orbit) and SMOS-SD (descending orbit) soil moisture products. This validates the accuracy of Tianmu-1 GNOS-M L2 soil moisture product algorithm and demonstrates Tianmu-1’s preliminary ability to retrieve global soil moisture. This article demonstrates for the first time the feasibility of using multi-GNSS reflection signals to retrieve global soil moisture, demonstrating the advantages of multi-GNSS reflectometry applications and providing important references for further understanding and optimizing the accuracy, spatiotemporal resolution, and reliability of Tianmu-1 global soil moisture retrieval.

     

/

返回文章
返回