基于BorutaShap的多参数CYGNSS森林生物量反演模型研究

Research on multi-parameter CYGNSS forest biomass inversion model based on BorutaShap

  • 摘要: 针对生物量估算中的森林地上生物量 (above ground biomass,AGB)、植被光学深度(vegetation optical depth,VOD)和冠层高度模型(canopy height model,CHM)三个关键指标,提出了一种基于旋风全球导航卫星系统(Cyclone Global Navigation Satellite System, CYGNSS)数据的回归复合模型BorutaShap-CNN-LSTM-GRU (BCLG). 该模型结合了卷积神经网络(convolutional neural network, CNN)、长短期记忆网络(long short-term memory network, LSTM)和门控循环单元(gated recurrent unit, GRU)的优势,通过BorutaShap特征选择技术优化模型性能,以提高反演精度. 通过对6个月的AGB和VOD及12个月的CHM的验证集反演结果比较,与未使用BorutaShap的全参数CLG模型相比,BCLG模型分别将AGB、VOD和CHM的 R^2 由0.78、0.96、−0.08提升到0.83、0.97、0.21,均方根误差 (root mean square error,RMSE)分别由25.08 t/ha、0.05 m、8.34 m降到22.29 t/ha、0.04 m、7.15 m. 与经过BorutaShap后单一的CNN、LSTM、GRU模型相比,BCLG复合模型在AGB、VOD和CHM的反演精度上略有优势,证明了所提出的BCLG模型在基于CYGNSS的生物量指标反演方面的良好性能,为遥感生物量监测和评估提供了一种新的技术手段.

     

    Abstract: Aiming at three key indicators of aboveground biomass (AGB), vegetation optical depth (VOD) and canopy height model (CHM) in biomass estimation, a regression composite model BorutaShap-CNN-LSTM-GRU (BCLG) based on Cyclone Global Navigation Satellite System (CYGNSS) data was proposed. The model combines the advantages of convolutional neural network (CNN), long short-term memory (LSTM) and gated recurrent unit (GRU), and optimizes the performance of the model through BorutaShap feature selection technology to improve the inversion accuracy. By comparing the inversion results of the validation set of AGB and VOD at 6 months and CHM at 12 months, compared with the full-parameter CLG model without BorutaShap, the BCLG model increased the \mathitR^2 of AGB, VOD and CHM from 0.78, 0.96 and −0.08 to 0.83, 0.97 and 0.21, respectively, and the RMSE decreased from 25.08 t/ha, 0.05 m and 8.34 m to 22.29 t/ha, 0.04 m and 7.15 m. Compared with the single CNN, LSTM and GRU models after BorutaShap, the BCLG composite model showed significant advantages in the inversion accuracy of AGB, VOD and CHM, which proves that the proposed BCLG model has good performance in biomass index inversion based on CYGNSS, and provides a new technical means for remote sensing biomass monitoring and evaluation.

     

/

返回文章
返回