Galileo三频非组合PPP相位小数偏差估计与模糊度解算

Fractional cycle bias estimation and ambiguity resolution for Galileo triple-frequency uncombined PPP

  • 摘要: 欧洲的Galileo目前已经有28颗在轨可用卫星,具备全球精密定位能力,并且所有卫星均能够播发多频信号,多频信号融合有望进一步改善精密单点定位(precise point positioning,PPP)模糊度固定解性能. 本文研究了Galileo三频非组合PPP相位小数偏差(fractional cycle bias,FCB)估计与模糊度解算(ambiguity resolution,AR)方法,并将其结果同双频非组合PPP模糊度固定解与浮点解结果进行了对比分析. 结果表明:利用155个全球分布的地面跟踪站数据进行FCB估计,单个频率上的FCB估值序列标准差(standard deviation,STD)优于0.04周;双频PPP浮点解在E、N、U方向收敛时间分别为32.0 min、10.0 min、43.5 min,双频PPP固定解收敛时间分别减少到30.5 min、8.5 min、32.0 min,三频PPP固定解收敛时间分别进一步缩短到16.5 min、8.0 min、32.0 min.

     

    Abstract: Galileo already has 28 in-orbit satellites, with precise positioning capabilities on a global scale. All Galileo satellites are capable of broadcasting multi-frequency signals, and multi-frequency integration is expected to further improve the performance of precise point positioning (PPP) ambiguity-fixed solutions. In this paper, the fractional cycle bias (FCB) estimation method and ambiguity resolution (AR) method for Galileo triple-frequency uncombined (UC) PPP are developed, and the derived results are compared with those of dual-frequency UC PPP ambiguity-fixed and ambiguity-float solutions. The results indicate that the standard deviation (STD) of UC FCB series on a single frequency is better than 0.04 cycles using datasets from 155 globally distributed ground tracking stations. The convergence time of Galileo dual-frequency PPP float solutions in the east, north and up directions is 32.0 min, 10.0 min and 43.5 min, respectively, and the corresponding statistic of dual-frequency PPP fixed solutions is reduced to 30.5 min, 8.5 min and 32.0 min in the three directions, respectively. The convergence time of triple-frequency PPP fixed solutions is further shortened to 16.5 min, 8.0 min and 32.0 min in the three directions, respectively.

     

/

返回文章
返回