Abstract:
The sky polarized light field can be used for navigation, but there is currently no polarization navigation system that can be applied in practical environment. One of the reasons is that the imaging camera used to collect the sky polarized light field is not standardized. This paper designs a super-resolution imaging polarization optical camera with the sky polarization field navigation. We apply a focal plane polarization detector to achieve the fast polarization image information acquisition and adopt a method of integrating fast moving platforms with optical systems to meet the special high-resolution requirements. This paper presents the design results of the camera system, introduces the calibration method of the super-resolution polarization camera and achieves the precise calibration. The precise voltage curve used for displacement control between the image and the detector is obtained. We utilize this data to accurately obtain polarization images of the target scene, while also obtaining the high-quality sky polarization field distribution data. The research results presented in this article have imaging capabilities that reach the diffraction limit. Optical cameras have the field curvature better than 50 μm, the distortion better than 0.7‰, and super-resolution imaging capabilities better than 2 times. The acquisition of high-quality linear polarization image data provides a raw data foundation for the subsequent polarization precise navigation and polarization feature measurement.