基于改进高斯-牛顿法的NLOS误差消除三维定位模型

NLOS error elimination 3D positioning model based on improved Gauss-Newton method

  • 摘要: 针对无线传感网络进行室内定位过程中由于信号非视距(NLOS)传播导致精度低的问题,提出一种基于改进高斯-牛顿法的NLOS误差消除室内三维定位模型. 该模型基于欧式距离,利用最小二乘算法得到目标位置的初始解,并根据改进的高斯-牛顿法对非线性最小二乘估计值进行迭代,进一步降低NLOS误差的影响,收敛得到最终的精确位置. 实验结果表明:该模型在三维空间的定位误差约在0.64 m,最大定位误差不超过1.29 m,误差小于1.2 m的概率为96.5%,较其他定位方法有更好地定位效果.

     

    Abstract: To address the problem of low accuracy caused by the non line of sight (NLOS) propagation of signals in the indoor positioning process of wireless sensor networks, a three-dimensional indoor positioning model with NLOS error elimination based on the improved Gauss Newton method was proposed. Firstly, the initial solution of the target position is obtained by using the least square algorithm based on the Euclidean distance. In order to further reduce the influence of NLOS error, the nonlinear least square estimation value is iterated according to the improved Gauss-Newton method, and the final accurate position is obtained by convergence. The experimental results show that the positioning error of the model in three-dimensional space is about 0.64 m, the maximum positioning error is not more than 1.29 m, and the probability of error less than 1.2 m is 96.5%, which is better than other positioning methods.

     

/

返回文章
返回