GPS坐标时序共模误差提取方法研究

GPS coordinate time series common mode error extraction methods

  • 摘要: 针对GPS坐标时序数据中存在的共模误差(CME),研究利用堆栈滤波(SF)、网络反演滤波(NIF)和主成分分析(PCA)三种方法进行剔除,以提高GPS监测区域地表位移的精度. 通过构建GPS坐标时序模型,去除明显构造运动,提取噪声残差时序,将隐含在噪声残差时序中的区域CME利用SF、NIF、PCA方法提取出来. 以日本房总半岛2019—2021年GPS坐标时序为例,比较三种方法和GPS站点空间分辨率对CME提取的影响,分析CME去除前后慢滑移地表位移的变化. 研究结果表明:SF、NIF、PCA方法提取CME的结果基本一致;GPS站点空间分辨率降低,提取的CME离散度增大;CME对慢滑移地表水平位移的大小和方向均会产生影响,需进行剔除.

     

    Abstract: The common mode errors (CMEs) existing in the Global Positioning System (GPS) coordinate time series are removed using the stack filter (SF), network inverse filter (NIF) and principal component analysis (PCA) methods, to improve the accuracy of GPS monitoring regional surface displacements. By building GPS coordinate time series model, remove the obvious tectonic movements, and extract the noise residuals. Then, the CMEs in the residuals are extracted with the SF, NIF, PCA methods. Using 2019-2021 GPS coordinate time series in Japan’s Boso peninsular, the SF, NIF, and PCA methods of extracting the CMEs are compared, the effects of different GPS site spatial resolutions on the CMEs are analyzed, and the surface displacements before and after removing the CMEs are analyzed. The results show that the performances of the SF, NIF and PCA methods to extract the CMEs are consistent. The spatial resolution of GPS sites decreases, and the dispersion of the extracted CMEs increases. The CMEs affect the size and direction of the slow slip surface displacements, so they need to be removed.

     

/

返回文章
返回