基于北斗PWV的暴雨时空变化特征分析

Analysis of temporal and spatial variation characteristics of rainstorm based on BeiDou PWV

  • 摘要: 利用49个山东省连续运行参考站(SDCORS) 2020年的北斗观测数据,使用GAMIT软件进行了大气水汽反演,得到了全年逐小时的大气可降水量(PWV)序列. 将反演得到的PWV与探空气象站观测的PWV对比,平均偏差为2.4 mm,均方根误差(RMSE)为3.4 mm,相关系数达到0.98,结果表明反演结果的精度符合气象研究需求. 分别从单连续运行参考站(CORS)和全省范围对PWV在暴雨过程中的变化进行了分析,发现PWV在暴雨产生前5~12 h开始上升,至暴雨产生时刻,PWV最大值普遍达到60 mm以上,平均变化率达到1~3 mm/h,越临近暴雨产生,PWV变化幅度越大,降水结束后,PWV会迅速下降. PWV的变化与暴雨的产生具有高度相关性,PWV在暴雨产生前后的剧烈变化,可用于暴雨预警研究,对于生产生活活动具有重要现实指导意义.

     

    Abstract: Using the BeiDou observation data of 49 continuously operating reference stations in Shandong Province (SDCORS) in 2020, the atmospheric water vapor inversion was carried out using GAMIT software, and the annual hourly precipitable water vapor (PWV) series were obtained. Comparing the PWV obtained by inversion with the PWV observed by radiosonde weather station, the average deviation is 2.4 mm, the root mean square error is 3.4 mm, and the correlation coefficient reaches 0.98, indicating that the accuracy of inversion results meets the needs of meteorological research. The changes of PWV in the rainstorm process were analyzed from a single CORS station and the whole province. It was found that PWV began to rise 5 hours to 12 hours before the rainstorm. At the time of the rainstorm, the maximum value of PWV generally reached more than 60 mm, and the average change rate reached 1 to 3 mm/h. The closer the rainstorm occurred, the greater the change range of PWV. After the precipitation ended, PWV will decline rapidly. The change of PWV is highly correlated with the occurrence of rainstorm, which can be used for rainstorm warning research.

     

/

返回文章
返回