顾及星座稳定性及综合成本的低轨导航星座优化设计方法

Optimization design method for low earth orbit navigation constellation considering constellation stability and comprehensive cost

  • 摘要: 利用低轨道地球卫星(LEO)进行导航增强首先需要设计低轨星座,在进行星座构型设计时,星座的稳定性及综合成本是需要考虑的两个重要因素,本文提出了顾及星座稳定性及综合成本进行低轨导航星座优化设计的方法. 首先,利用遗传算法对铱星星座进行了优化,优化后的铱星星座与未优化前星座相比较,全球可见卫星数均值由2.3颗增至2.9颗,可见卫星数标准差由2.3降至0.7,综合成本因子由5.3降至4.5,证明了本方法的有效性. 然后以Walker星座作为基本构型,在保证低轨混合星座稳定性的基础上,顾及导航性能和综合成本,利用遗传算法进行了混合星座的优化. 将优化后的低轨混合星座与北斗星座进行了组合,组合后的星座与北斗星座相比较,全球可见卫星数均值由6.9颗增至9.3颗,可见卫星数标准差由1.1降至0.4.

     

    Abstract: The first step is to design a low earth orbit satellite (LEO) for navigation augmentation using low earth orbit satellites. When designing the constellation configuration, the stability and comprehensive cost of the constellation are two important factors to be considered. This paper presents an optimal design method for low earth orbit navigation constellation considering constellation stability and comprehensive cost. First, the Iridium constellation is optimized by genetic algorithm. Compared with Iridium constellation, the mean number of visible satellites increases from 2.3 to 2.9, the standard deviation of visible satellites decreases from 2.3 to 0.7, and the comprehensive cost factor decreases from 5.3 to 4.5, which proves the effectiveness of this method. Then, taking Walker constellation as the basic configuration, the low earth orbit hybrid constellation is optimized by genetic algorithm, considering the navigation performance and comprehensive cost on the basis of ensuring the stability of the hybrid constellation. The optimized low earth orbit hybrid constellation is combined with the BDS constellation. Compared with the BDS, the mean number of visible satellites increases from 6.9 to 9.3, and the standard deviation of visible satellites decreases from 1.1 to 0.4.

     

/

返回文章
返回