基于速度信息约束的智能终端分米级定位

Decimeter-level positioning of intelligent terminal based on speed information constraint

  • 摘要: 随着位置服务的发展,人们对定位精度的需求不断提升,目前智能手机定位精度仅为米级. 2016年谷歌宣布允许开发者获取手机全球卫星导航系统(GNSS)原始观测数据,为研究手机GNSS高精度定位算法提供了支持. 由于智能手机获取的伪距噪声较大,单纯利用伪距进行单点定位或伪距差分定位精度有限,很难达到较高精度. 为此在对数据质量进行控制的基础上,利用智能终端输出的数据求解速度,作为初始解对坐标进行约束,并对测速的精度进行分析,组合伪距与载波进行差分定位. 实验结果表明:测速精度约为10 cm/s,满足作为初始解参与解算的定位要求. 静态仿动态测试结果收敛后平面精度为0.35 m,高程精度为0.59 m,动态测试结果平面精度为0.87 m,高程精度为1.09 m,总体定位结果可达分米级别.

     

    Abstract: With the development of location services, people’s demand for positioning accuracy continues to increase. At present, the positioning accuracy of smart phones is only at the meter level. In 2016, Google announced that it would allow developers to obtain mobile phone the Global Navigation Satellite System (GNSS) raw observation data, and it provided support for the research on mobile phone GNSS high-precision positioning algorithms. Since the pseudorange noise acquired by smart phones is relatively large, the accuracy of single-point positioning or pseudorange differential positioning using only pseudorange is limited, and it is difficult to achieve high accuracy. Therefore, on the basis of controlling the data quality, using the data output by the intelligent terminal, the speed is solved as the initial solution to constrain the coordinates. The accuracy of the speed measurement is analyzed, and the differential positioning is orgunized combing pseudorange and carrier. The experimental results show that the accuracy of velocity measurement is about 10 cm/s, which meets the positioning requirements of participating in the calculation as an initial solution. After the static simulation dynamic test results converge, the plane accuracy is 0.35 m, and the elevation accuracy is 0.59 m.The result of dynamic test is that the plane accuracy is 0.87 m, and the elevation accuracy is 1.09 m.The overall positioning result can reach the decimeter level.

     

/

返回文章
返回