京津冀地区FY-4A水汽校正模型研究

Study on FY-4A PWV correction model in Beijing-Tianjin-Hebei region

  • 摘要: 融合全球卫星导航系统(GNSS)与风云气象卫星FY-4A可获得高精度高空间分辨率的水汽分布信息. 利用中国大陆构造环境监测网络(CMONOC)提供的GNSS观测资料开展京津冀地区FY-4A水汽校正研究. 首先对京津冀地区进行区域划分,按区域分季节开展GNSS水汽与FY-4A水汽的相关性分析;其次分区域、分季节选择不同的函数模型结合GNSS水汽资料构建FY-4A水汽校正模型;然后采取区域模型、单站点模型与实测GNSS水汽开展模型的可靠性检验;最后通过分区域FY-4A水汽校正和图像叠加,获得校正后的京津冀地区FY-4A水汽分布. 研究表明:FY-4A水汽与GNSS水汽的相关性较好,区域FY-4A水汽校正模型精度与单站点模型精度相当,可取代单站点模型用于FY-4A的水汽校正. 基于CMONOC的分区域函数模型在一定程度上提高FY-4A水汽精度,为短期天气预报和合成孔径雷达(InSAR)大气校正提供参考.

     

    Abstract: Integrating Global Navigation Satellite System (GNSS) and Fengyun meteorological satellite FY-4A can obtain high-precision and high-spatial resolution water vapor distribution information. This paper used the GNSS observation data from crustal movement observation network of China (CMONOC) to carry out the FY-4A water vapor correction study in the Beijing-Tianjin-Hebei region. Firstly, the Beijing-Tianjin-Hebei region was divided into four regions, and the correlation analysis between GNSS precipitable water vapor (PWV) and FY-4A PWV was carried out by regions and seasons. Secondly, different function models were selected by region and season and combined with GNSS PWV data to construct the FY-4A PWV correction models. Then, the GNSS PWV was compared with the results of the regional model and the single-site model respectively to carry out the reliability test of the model. Finally, the corrected FY-4A PWV distribution in the Beijing-Tianjin-Hebei region was obtained through regional FY-4A PWV correction and mosaiced. Research shows that the FY-4A PWV has a good correlation with GNSS PWV, and the accuracy of the regional FY-4A PWV correction model is equivalent to that of the single-site model, which can replace the single-site model for the FY-4A PWV correction. The regional model based on CMONOC GNSS PWV can improve the accuracy of FY-4A PWV to a certain extent, and provide references for the short-term weather forecast and InSAR atmospheric correction.

     

/

返回文章
返回