• 中国科学引文数据库(CSCD)
  • 中文科技期刊数据库
  • 中国核心期刊(遴选)数据库
  • 日本科学技术振兴机构数据库(JST)
  • 中国学术期刊(网络版)(CNKI)
  • 中国学术期刊综合评价数据库(CAJCED)
  • 中国超星期刊域出版平台

基于线性矩阵不等式的智能飞行器航迹规划方法

沈添天, 袁思敏, 吴芳, 陈中祥, 余果

沈添天, 袁思敏, 吴芳, 陈中祥, 余果. 基于线性矩阵不等式的智能飞行器航迹规划方法[J]. 全球定位系统, 2022, 47(2): 73-81. DOI: 10.12265/j.gnss.2021083103
引用本文: 沈添天, 袁思敏, 吴芳, 陈中祥, 余果. 基于线性矩阵不等式的智能飞行器航迹规划方法[J]. 全球定位系统, 2022, 47(2): 73-81. DOI: 10.12265/j.gnss.2021083103
SHEN Tiantian, YUAN Simin, WU Fang, CHEN Zhongxiang, YU Guo. Path planning of intelligent aircraft based on linear matrix inequality[J]. GNSS World of China, 2022, 47(2): 73-81. DOI: 10.12265/j.gnss.2021083103
Citation: SHEN Tiantian, YUAN Simin, WU Fang, CHEN Zhongxiang, YU Guo. Path planning of intelligent aircraft based on linear matrix inequality[J]. GNSS World of China, 2022, 47(2): 73-81. DOI: 10.12265/j.gnss.2021083103

基于线性矩阵不等式的智能飞行器航迹规划方法

基金项目: 国家自然科学基金资助项目(61803152)
详细信息
    作者简介:

    沈添天: (1985—),女,博士,副教授,硕士生导师,研究方向为机器人传感与伺服控制技术

    袁思敏: (1997—),女,硕士,研究方向为机器人路径规划

    陈中祥: (1985—),男,博士,副教授,硕士生导师,研究方向为重复控制,迭代学习控制,复杂系统建模

    通信作者:

    陈中祥 E-mail: chenzx@hunnu.edu.cn

  • 中图分类号: P228.4;TP242.6

Path planning of intelligent aircraft based on linear matrix inequality

  • 摘要: 智能飞行器在军用和民用领域发挥着越来越重要的作用. 在飞行过程中经常会出现累积的定位误差并且飞行到达应用场景时有定位精度要求,故需要对飞行轨迹进行适当的位置校正. 为此,提出了一种在复杂条件下的智能飞行器航迹规划方法,利用基于线性矩阵不等式(LMI)的优化方法实现最少校正次数和最短飞行距离的双重目标. 根据可用校正点数量以及它们对飞行器位置的不同影响,首先生成一个0~1三角变量矩阵来表示从点A开始的飞行航迹,以面向目标的方式不重复的遍历一系列校正点,并最终到达目标点;然后对航迹相关矩阵的变量项施加强制性的约束条件,将所有的约束作为一个整体转换和施加到之前定义的变量矩阵中,最后利用基于LMI的优化方法实现双重优化. 通过仿真结果验证了所提出的航迹规划方法在计算资源和优化结果方面比线性规划等其他优化方法更优越.
    Abstract: Intelligent aircraft plays an increasingly important role in a variety of applications. The aircraft's position accuracy while arriving at the application scenery is required. And it necessitates the flight's trajectory planning with appropriate position corrections due to the accumulated position errors that usually occur during the flight. To this end, this paper proposes a trajectory planning method for an intelligent aircraft working in some complex conditions, where an linear matrix inequality (LMI)-based optimizing method is utilized to achieve the dual goal of minimum correction times and minimum travel length. According to the number of available correction points and their different influences on the aircraft position, a triangular variable matrix with 0-1 entries is first designed to represent a flight trajectory that starts from point A, traverses a series of correction points in a target-oriented manner without any repetition, and ultimately arrives at the target point. After that, several other compulsory constranits are imposed on the trajectory-related matrix's variable entries, all of these constranits are later transformed and imposed on the previously defined variable matrix as a whole. The LMI-based optimizing method is performed to achieve the dual goal. Simulational results validate the proposed trajectory planning method and demonstrate its remarkable performance in the sense of less computing resources and optimization results, compared with many other optimization methods such as linear pro-gramming.
  • 图  1   起始点A和目标点B周围的冗余校正点

    图  2   筛选出的校正点以目标为导引的方式重新排列(以一小组选中校正点为例)

    图  3   经过规划后的轨迹

    图  4   最优规划三维航迹图

    图  5   校正点序号对定位误差的影响

    图  6   最优规划三维航迹图

    表  1   常用符号含义

    符号符号含义
    A出发点A
    B目标点B
    $ {x}_{ij} $0~1变量
    $ {\alpha }_{1} $垂直校正点的垂直误差上界
    $ {\alpha }_{2} $垂直校正点的水平误差上界
    ${\;\beta }_{1}$水平校正点的垂直误差上界
    ${\;\beta }_{2}$水平校正点的水平误差上界
    $ \theta $终点的垂直与水平误差上界
    $ \delta $飞行器飞行1 m产生的误差
    $ {d}_{ij} $校正点$ i $与校正点$ j $之间的欧式距离
    下载: 导出CSV

    表  2   图3所示规划后轨迹的变量矩阵

    变量
    矩阵
    C1(A)C2C3 C4 C5 C6 C7 C8(B)
    C1(A)00100000
    C200000000
    C300001000
    C400000000
    C500000001
    C600000000
    C700000000
    C8(B)00000000
    下载: 导出CSV

    表  3   航迹规划结果 m

    校正点
    编号
    校正前的
    垂直误差
    校正前的
    水平误差
    校正点
    类型
    A00A
    50413.3913.391
    29510.1823.570
    9217.537.351
    6088.3515.700
    9020.7212.371
    129.6922.060
    40422.5312.841
    59511.0323.870
    50222.2311.201
    B8.4919.69B
    下载: 导出CSV

    表  4   算法性能指标

    算法名称校正点数量航迹长度/m误差是否满足要求
    LMI9104890.550
    Dijkstra算法10104562.940
    GA9106837.970
    目标导引法9111286.498
    下载: 导出CSV

    表  5   航迹规划结果 m

    校正点
    编号
    校正前的
    垂直误差
    校正前的
    水平误差
    校正点
    类型
    A00A
    16313.2913.290
    11418.625.331
    813.9219.260
    30919.455.521
    3055.9711.490
    12315.179.201
    4510.0119.210
    16017.497.491
    925.7813.260
    9315.269.481
    619.8319.320
    29216.396.551
    B6.9613.51B
    下载: 导出CSV
  • [1]

    ZHANG C, ZHEN Z Y, WANG D B, et al. UAV path planning method based on ant colony optimization[C]//Chinese Control and Decision Conference, 2010. DOI: 10.1109/CCDC.2010.5498477

    [2]

    YANG Q, YOO S J. Optimal UAV path planning: sensing data acquisition over IoT sensor networks using multi-objective bio-inspired algorithms[J]. IEEE access, 2018(99): 1. DOI: 10.1109/ACCESS.2018.2812896

    [3]

    ASADI S, AZIMIRAD V, ESLAMI A, et al. A novel global optimal path planning and trajectory method based on adaptive Dijkstra-immune approach for mobile robot[C]//IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2011. DOI: 10.1109/AIM.2011.6027073

    [4] 李昱奇, 刘志乾, 程凝怡, 等. 多约束条件下无人机航迹规划[J]. 计算机工程与应用, 2020, 57(4): 225-230. DOI: 10.3778/j.issn.1002-8331.1810-0410
    [5]

    KALA R, SHUKLA A, TIWARI R. Fusion of probabilistic A* algorithm and fuzzy inference system for robotic path planning[J]. Artificial intelligence review, 2010, 33(4): 307-327. DOI: 10.1007/s10462-010-9157-y

    [6]

    WANG Y, CAI F, WANG Y. Dynamic path planning for mobile robot based on particle swarm optimization[J]. AIP conference proceedings, 2017, 1864(1): 20024. DOI: 10.1063/1.4992841

    [7]

    CHENG Z, WANG E G, TANG Y X, et al. Real-time path planning strategy for UAV based on improved particle swarm optimization[J]. Journal of computers, 2014, 9(1): 209-214. DOI: 10.4304/jcp.9.1.209-214

    [8]

    CHEN Y B, LUO G C, MEI Y S, et al. UAV path planning using artificial potential field method updated by optimal control theory[J]. International journal of systems science, 2016, 47(6): 1407-1420. DOI: 10.1080/00207721.2014.929191

    [9]

    SEO W J, OK S H, AHN J H, et al. An efficient hardware architecture of the A-star algorithm for the shortest path search engine[C]// The 5th International Joint Conference on INC, IMS and IDC, 2009. DOI: 10.1109/NCM.2009.371

    [10]

    CARSTEN J, FERGUSON D, STENTZ A. 3D field D: improved path planning and replanning in three dimensions[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006: 3381-3386. DOI: 10.1109/IROS.2006.282516

    [11]

    CULLIGAN K, VALENTI M, KUWATA Y, et al. Three-dimensional flight experiments using on-line mixed-integer linear programming trajectory optimization[C]//American Control Conference, 2007. DOI: 10.1109/ACC.2007.4283101

    [12]

    KOU X L, LIU S Y, ZHANG J K, et al. Co-evolutionary particle swarm optimization to solve constrained optimization problems[J]. Computers and mathematics with applications, 2009, 57(11-12): 1776-1784. DOI: 10.1016/j.camwa.2008.10.013

    [13] 方群, 徐青. 基于改进粒子群算法的无人机三维航迹规划[J]. 西北工业大学学报, 2017, 35(1): 66-73. DOI: 10.3969/j.issn.1000-2758.2017.01.011
    [14]

    HAO Z, XIONG H L, LIU Y, et al. Trajectory planning algorithm of UAV based on system positioning accuracy constraints[J]. Electronics, 2020, 9(2): 250. DOI: 10.3390/electronics9020250

  • 期刊类型引用(4)

    1. 王江皊,裴勇军,汪程秋,孙涛,朱鹏超. 改进ELM模型在卫星导航欺骗式干扰检测中的应用. 测绘与空间地理信息. 2025(02): 135-138+142 . 百度学术
    2. 田静,谭论语,张榆喻,杨馨,刘文祥. 电力行业基于载噪比的卫星导航欺骗检测技术. 全球定位系统. 2024(06): 8-13 . 本站查看
    3. 倪淑燕,付琦玮,陈世淼,祝新力. 卫星导航欺骗式干扰检测技术综述. 电子技术与软件工程. 2023(07): 147-153 . 百度学术
    4. 周彦,王山亮,杨威,易炯,张世仓,王冬丽,蔡成林. 基于PSO-ELM的卫星导航欺骗式干扰检测. 导航定位与授时. 2022(05): 153-161 . 百度学术

    其他类型引用(3)

图(6)  /  表(5)
计量
  • 文章访问数:  513
  • HTML全文浏览量:  248
  • PDF下载量:  33
  • 被引次数: 7
出版历程
  • 收稿日期:  2021-08-30
  • 网络出版日期:  2022-02-23
  • 刊出日期:  2022-05-12

目录

    /

    返回文章
    返回
    x 关闭 永久关闭