基于BDS及InSAR的龙羊峡水电站库区地表形变研究

Study on surface deformation of Longyangxia hydropower station reservoir area based on BDS and InSAR

  • 摘要: 目前北斗卫星导航系统(BDS)、连续运行参考站系统(CORS)和合成孔径雷达干涉测量(InSAR)技术发展迅猛,前景广阔. 但是利用上述技术监测库区形变研究聚焦点是人工建筑,并未验证BDS的可用性,也未融合CORS技术的优势. 针对此问题,结合BDS和CORS高时间分辨率,InSAR高空间分辨率的优势,以龙羊峡库区为研究区域探索合适的结合监测方案. 研究结果表明:龙羊峡库区在研究时期内存在大面积的地表形变区,最大沉降速率52.48 mm/a;最大抬升速率43.60 mm/a;以全球卫星导航系统(GNSS)静态解算成果为参考值进行验证,BDS实时动态(RTK)差分监测成果的精度为7.1 mm,InSAR监测成果的精度为4.4 mm,均满足形变监测的精度要求;采用InSAR进行大面积形变区筛选,再结合CORS利用BDS进行重点区域实时动态差分监测的模式对水库全方位形变监测是可行的.

     

    Abstract: At present, BeiDou Navigation Satellite System (BDS), continuously operation reference sations (CORS) and synthetic aperture radar interferometry (InSAR) are developing rapidly and have a bright future. However, the focus of using the above technology to monitor the deformation of the reservoir area is artificial buildings, which does not verify the availability of BDS or integrate the advantages of CORS technology. In view of this problems, combined with the advantages of BDS and CORS with high temporal resolution and InSAR high spatial resolution, a suitable combined monitoring scheme is explored in Longyangxia reservoir area. The results show that: there is a large area of surface deformation area in Longyangxia reservoir area during the study period, with the maximum subsidence rate of 52.48 mm/a and the maximum uplift rate of 43.60 mm/a. The accuracy of BDS real-time dynamic difference monitoring results is 7.1 mm, and the accuracy of InSAR monitoring results is 4.4 mm, which meet the precision of deformation monitoring It is feasible to use InSAR to screen large area deformation area and combine CORS with BDS for real-time dynamic difference monitoring of key areas.sults is 4.4 mm, which meet the precision of deformation monitoring It is feasible to use InSAR to screen large area deformation area and combine CORS with BDS for real-time dynamic difference monitoring of key areas.

     

/

返回文章
返回