Abstract:
In order to compare and analyze BDS-3/Galileo compatible frequency pseudorange single-point positioning accuracy, based on the measured data of MGEX distributed tracking stations, singal point positioning accuracy of pseudorange combination of dual-system compatible frequencies and non-compatible frequenry of BDS-3 and Galileo are analyzed, together with that of single frequency of BDS-3 and Galileo respectively. It is found through research that BDS-3/Galileo combination effectively improves the visible number of satellites and the geometric structure of satellite spatial distribution compared to a single system. In terms of single system positioning, the single point positioning accuracy of B1C and B2a pseudorange of BDS-3 is better than that of comesponding compatible frequenry of Galileo. In terms of dual-system positioning, the single point positioning accuracy of compatible frequenry pseudorange combination of BDS-3/Galileo is better than that of non-compatible frequenry combination. and the dual-system combination positioning improves the Galileo single-system positioning accuracy better BDS-3, which indicates that the design of BDS-3 compatible frequency effectively improves the compatibility with Galileo system.