GNSS World of China

Volume 45 Issue 2
Apr.  2020
Turn off MathJax
Article Contents
CHEN Wantong, SHANG Zhenghui, WANG Zhuqing. Two-station cooperative precision positioning algorithm with additional baseline constraints[J]. GNSS World of China, 2020, 45(2): 21-29. doi: DOI:10.13442/j.gnss.1008-9268.2020.02.004
Citation: CHEN Wantong, SHANG Zhenghui, WANG Zhuqing. Two-station cooperative precision positioning algorithm with additional baseline constraints[J]. GNSS World of China, 2020, 45(2): 21-29. doi: DOI:10.13442/j.gnss.1008-9268.2020.02.004

Two-station cooperative precision positioning algorithm with additional baseline constraints

doi: DOI:10.13442/j.gnss.1008-9268.2020.02.004
  • Publish Date: 2020-04-15
  • Traditional Precise Point Positioning (PPP) has many advantages such as high accuracy and easy operation. PPP usually uses the Kalman filtering (KF) to solve unknown parameters. However, the positioning performance depends on the accurate kinematic model and filtering initial value. The inaccurate kinematic model or initial filtering value will lead to filter performance degradation or even divergence. In order to solve this problem, this paper proposes a twostation cooperative PPP positioning method with additional baseline constraint information. The algorithm uses the direction information and length information of the baseline to modify the estimated position of the two stations. By reduces the error covariance matrix of the floating-point solution, the algorithm improves the accuracy of the floating-point solution. Further validation test based on real GPS data shows that results from baseline vector constraint PPP effectively be improved compared with the traditional PPP parameter estimation method.

     

  • loading
  • [1]
    CHOY S, BISNATH S, RIZOS C. Uncovering common misconceptions in GNSS precise point positioning and its future prospect[J]. GPS solutions, 2017, 21(1):13-22.DOI:10.1007/s10291-016-0545-X.
    [2]
    ZHANG X H, PAN Y M, ZUO X, et al. An improved robust Kalman filtering and its application in PPP[J]. Geomatics and information science of Wuhan University, 2015, 40(7):858-864.DOI:10.13203/jwhugis20130577.
    [3]
    GUO F, ZHANG X H. Adaptive robust Kalman filtering for precise point positioning[J]. Measurement science and technology, 2014, 25(10): 105011.DOI:10.1008/0957-0233/25/10/105011.
    [4]
    JIANG C Y, ZHANG Y A. Some results on linear equality constrained state filtering[J]. International journal of control, 2013, 86(12): 2115-2130.DOI: 10.1080/00207179.2013.801565.
    [5]
    LIU Y W, LIU J N, ZHU D Y. Application of adaptive Kalman[JP2] filter restricted by road information to vehicleborne navigation[J]. Geomatics and information dcience of  Wuhan University, 2008, 33(8):828-830.
    [6]
    ZHANG X H, ZUO X, LI P. Mathematic model and performance comparison between ionosphere free combined and uncombined precise point positioning[J]. Geomatics and information science of  Wuhan University, 2013, 38(5):561-565.
    [7]
    SHI J B, GAO Y. A comparison of three PPP integer ambiguity resolution methods[J]. GPS solutions, 2014, 18(4):519-528.DOI: 10.1007/S/0291-013-0348-2.
    [8]
    GUO F, ZHANG X H, WANG F H. Performance enhancement for GPS positioning using constrained Kalman filtering[J]. Measurement science and technology, 2015, 26(8).DOI: 10.1088/0957-0233/26/8/085020.
    [9]
    ABDEL-SALAM M A. Precise point positioning using un-differenced code and carrier phase observations[M]. Canada:Schlich School of Engineering.2005.DOI: 10.11575/PRISM/5202.
    [10]
    XU S G, XIONG Y L, WANG D J, et al. Kinematic precise point positioning algorithm with constraint condition[C]// Proceedings of China Satellite Navigetion Conference(CSNC)  2016(3): 541-552.DOI: 10.1007/978-981-10-0940-2-47.
    [11]
    HE K F, XU T H, FRSTE C, et al. GNSS precise kinematic positioning for multiple kinematic stations based on a priori distance constraints[J]. Sensors, 2016, 16(4): 470.DOI: 10.3390/S16040470.
    [12]
    SIMON D. Kalman filtering with state constraints: a survey of linear and nonlinear algorithms[J]. IET control theory and applications, 2010, 4(8):1303-1318.DOI:10.1049/ietcta.2009.0032.sour.[13 ]GUPTA N. Mathematically equivalent approaches for equality constrained Kalman filtering[J]. Biogeosciences, 2009, 7(1):8193.DOI:10.5194/bg-7-43-2010.ce.IEEE Xplore.
    [13]
    SIMON D, CHIA T L. Kalman filtering with state equality constraints[J]. IEEE transactions on aerospace and electronic systems, 2002, 38(1):128-136.DOI: 10.1109/7.993234.
    [14]
    BAHADUR B, NOHUTCH  M. PPPH: A MATLABbased software for multiGNSS precise point positioning analysis[J]. GPS solutions, 2018, 22(4):113.DOI: 10.1007/s/02991-18-0777-z.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (355) PDF downloads(61) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return