GNSS World of China

Volume 45 Issue 1
Feb.  2020
Turn off MathJax
Article Contents
DENG Su, XUE Feng, YU Min. WiFi fingerprint indoor location method with BP neural network based on improved artificial fish swarm optimization algorithm[J]. GNSS World of China, 2020, 45(1): 82-87. doi: DOI:10.13442/j.gnss.1008-9268.2020.01.014
Citation: DENG Su, XUE Feng, YU Min. WiFi fingerprint indoor location method with BP neural network based on improved artificial fish swarm optimization algorithm[J]. GNSS World of China, 2020, 45(1): 82-87. doi: DOI:10.13442/j.gnss.1008-9268.2020.01.014

WiFi fingerprint indoor location method with BP neural network based on improved artificial fish swarm optimization algorithm

doi: DOI:10.13442/j.gnss.1008-9268.2020.01.014
  • Publish Date: 2020-02-15
  • In view of the traditional indoor localization algorithm based on BP neural network existing low precision and sconvergence speed. considering the sophisticated indoor environment, there is usually the multipath effect,in addition that the signal attenuation model unsuitable for accurate positioning, this paper proposes an improved artificial fish optimization WiFi fingerprint indoor localization algorithm of BP neural network. the foraging and searching methods of artificial fish are used to improve the speed and ability of global optimization, using the improved artificial fish algorithm (IAFSA) to optimize the selection of weights and thresholds of BP neural network, which effectively avoid the disadvantage that predicted value of traditional BP neural network is easily plunged into partial optimum, the signal is denoised by gaussian filter in advance.At the same time, the relationship between the signal strength value (RSSI) obtained by the sampling point and the position coordinate is established. Experimental results show that compared with the traditional BP neural network method, the proposed method of this paper reduces the average positioning error by 0.75m, and the average positioning accuracy is improved by about 32.2%. The algorithm of this paper improves the reliability of positioning and has better stability.

     

  • loading
  • [1]
    张会清, 石晓伟, 邓贵华, 等. 基于BP神经网络和泰勒级数的室内定位算法研究[J]. 电子学报, 2012, 40(9): 1876-1879.
    [2]
    邓胡滨, 许峰, 周洁. 基于GRNN神经网络的ZigBee室内定位算法研究[J]. 华东交通大学学报, 2017, 34(4): 137-142.
    [3]
    黄丰胜, 肖厦, 成芳, 等. 基于RSSI的WiFi室内定位常用算法对比[J]. 信息技术, 2017(12): 73-75.
    [4]
    李瑛, 胡志刚, 刘洋. 一种基于BP神经网络的室内定位模型[J]. 计算机应用, 2007, 27(6): 56-57,60.
    [5]
    闫思锐, 汪学明. 基于BP神经网络和APIT室内定位算法的研究与实现[J]. 通信技术, 2017, 50(8): 1742-1746.
    [6]
    陈锐志, 陈 亮. 基于智能手机的室内定位技术的发展现状和挑战[J]. 测绘学报, 2017, 46(10): 1616-1326.
    [7]
    宋斌斌, 余敏, 何肖娜, 等. 一种BP神经网络的室内定位Wifi标定方法[J]. 导航定位学报, 2019, 7(1): 43-47.
    [8]
    刘晓晨, 张静. 基于改进BP神经网络的室内无线定位方法[J]. 计算机应用与软件, 2016, 33(6): 114-117.
    [9]
    郭敏, 行鸿彦, 张冬冬, 等. 基于AFSA-BP神经网络的湿度传感器温度补偿[J]. 仪表技术与传感器, 2017(8):6-10.
    [10]
    杨铮, 吴陈沭, 刘云浩. 位置计算: 无线网络定位于可定位性[M]. 北京: 清华大学出版社, 2014.
    [11]
    李英. 基于BP神经网络的室内定位技术研究[D]. 长沙: 中南大学, 2007.
    [12]
    李阳林, 黄文德, 盛利元. 基于BP神经网络的伪距观测值电离层误差分离[J]. 全球定位系统, 2015, 40(6): 1-5.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (347) PDF downloads(100) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return