GNSS World of China

Volume 44 Issue 2
Apr.  2019
Turn off MathJax
Article Contents
HUANG Yiyu, WEI Guanjun, REN Rui. Analysis of the influence of tropospheric mapping function  on GNSS inversion precipitable water vapor[J]. GNSS World of China, 2019, 44(2): 76-83. doi: DOI:10.13442/j.gnss.1008-9268.2019.02.011
Citation: HUANG Yiyu, WEI Guanjun, REN Rui. Analysis of the influence of tropospheric mapping function  on GNSS inversion precipitable water vapor[J]. GNSS World of China, 2019, 44(2): 76-83. doi: DOI:10.13442/j.gnss.1008-9268.2019.02.011

Analysis of the influence of tropospheric mapping function  on GNSS inversion precipitable water vapor

doi: DOI:10.13442/j.gnss.1008-9268.2019.02.011
  • Publish Date: 2019-04-15
  • The tropospheric mapping function is an important model for transforming the zenith tropospheric delay into the total delay on the signal propagation path. Choosing an appropriate mapping function is of great significance for retrieving the accuracy of atmospheric precipitation water vapor(PWV). In this paper, the influence of tropospheric mapping function on the inversion of atmospheric PWV accuracy is studied. Select three kinds of mapping functions, VMF1, GMF and NMF, and use GAMIT software to compare the three mapping functions in different seasons and different altitudes. Retrieving the accuracy impact of atmospheric PWV. The results show that the inversion accuracy of the GMF function model with 10° elevation angle as the solution cutoff height angle is the best when the atmospheric precipitation is inverted, Which provides a reference for further improving the real-time accuracy of GNSS atmospheric water vapor inversion.

     

  • loading
  • [1]
    BEVIS M,BUSINGER S,HERRING T, et al. GNSS [JP]meteorology-remote sensing of atmospheric water vapor using the Global Positioning System [J].Journal of Geophysical Research,1992,97(D14): 15787-15801.DOI: 10.1029/92jD01517.
    [2]
    BRENOT H, WAUTELET G, ROOZENDAEL M V,et al. GNSS meteorology and impact on NRT position [C]//Rotterdam: European Navigation Conference (ENC) GNSS 2014,2014: 15-17.http://hdl.handle.net/2268/176084.
    [3]
    毕研盟,毛节泰,刘晓阳,等.应用地基GPS遥感倾斜路径方向大气水汽总量[J].地球物理学报,2006(2):335-342.
    [4]
    谷晓平,王长耀,蒋国华.地基GPS遥感大气水汽含量及在气象上的应用[J].气象科学,2005,25(5):543-550.
    [5]
    韩阳,吕志伟,徐剑,等.基于BDS/GPS观测量的大气可降水量反演精度分析[J].导航定位学报,2017,5(1):39-45.
    [6]
    张鹏飞. 地基GPS探测水汽理论与技术研究[D].西安:长安大学,2013.
    [7]
    王勇,刘严萍.地基GNSS气象学原理与应用研究[M].北京:测绘出版社,2012:3-10.
    [8]
    张阳,陈晨,付丹丹,等.一种全球对流层延迟改正的映射函数选择方法[J].导航定位学报,2018,6(2):132-136.
    [9]
    姚宜斌,胡羽丰,张豹.利用多源数据构建全球天顶对流层延迟模型[J].科学通报,2016,61(24):2730-2741.
    [10]
    王君刚,陈俊平,王解先.GNSS对流层延迟映射模型分析[J].天文学进展,2014,32(3):383-394.
    [11]
    罗宇,罗林艳,范嘉智,等.天顶静力延迟模型对GPS可降水量反演的影响分析及改进[J].测绘工程,2018,27(8):13-17.
    [12]
    BOEHM J,NIELL A,TREGONING P, et al. Global Mapping Function (GMF): A New Empirical Mapping Function Based on Numerical Weather Model Data [J].Geophysical Research Letters,2006(33):1-4.DOI: 10.1029/2005GL025546.
    [13]
    李斐,张卿川,张胜凯,等.对流层映射函数对南极地区GPS解算的影响[J].测绘通报,2015(12):5-9.
    [14]
    刘宗强,党亚民,杨强,等.对流层映射函数对陆态网解算精度的影响[J].测绘通报,2017(5):6-10.
    [15]
    汪进新,刘艳霞.对流层映射函数对GPS可降水量影响探讨[J].环球市场信息导报,2017(30):137.
    [16]
    李征航,黄劲松.GNSS测量与数据处理[M].武汉:武汉大学出版社,2016.
    [17]
    NIELL A E.Global Mapping Functions for the Atmosphere Delay at Radio Wavelengths[J]. Journal of Geophysical Research: Solid Earth (1978-2012),1996,101(B2):3227-3246.
    [18]
    KOUBA J. Implementation and Testing of the Gridded Vienna Mapping Function 1(VMF1)[J].Journal of Geodesy,2008,82(4-5):193-205.
    [19]
    张双成,叶世榕,刘经南,等.动态映射函数最新进展及其在GNSS遥感水汽中的应用研究[J].武汉大学学报(信息科学版),2009,34 (3):280-283.
    [20]
    陈永奇,刘焱雄,王晓亚,等.香港实时GPS水汽监测系统的若干关键技术[J].测绘学报,2007(1),2007,36(1):9-12,25.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (408) PDF downloads(131) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return