GNSS World of China

Volume 45 Issue 6
Dec.  2020
Turn off MathJax
Article Contents
YAO Xiaofeng, WU Shenglan, ZHOU Biao, PANG Min. Maximum likelihood estimators for rigid body localization using DOA measurement[J]. GNSS World of China, 2020, 45(6): 107-114. doi: 10.13442/j.gnss.1008-9268.2020.06.016
Citation: YAO Xiaofeng, WU Shenglan, ZHOU Biao, PANG Min. Maximum likelihood estimators for rigid body localization using DOA measurement[J]. GNSS World of China, 2020, 45(6): 107-114. doi: 10.13442/j.gnss.1008-9268.2020.06.016

Maximum likelihood estimators for rigid body localization using DOA measurement

doi: 10.13442/j.gnss.1008-9268.2020.06.016
  • Received Date: 2020-07-20
    Available Online: 2021-04-09
  • Rigid body localization (RBL) not only estimates the position of the target, but also obtains the attitude information of the target. The RBL framework of single base station is studied in three-dimensional space. This framework uses a single base station to measure the direction of arrival (DOA) of signal from small-scale wireless sensor network signal installed on the rigid target surface, and then fuses the DOA measurement with the network topology information, and finally proposes two maximum likelihood estimators (MLE) for RBL purpose. The improved Gauss Newton algorithm is adopted to optimize the MLEs of rotation matrix and translation vector and the three-dimensional position and attitude of the object are estimated. The simulation results show that the proposed MLEs can approach the theoretical Cramer Rao Lower Bound, and have better performance with respect to convergence success rate and computation cost.

     

  • loading
  • [1]
    FEATHERSTONE R.Robot dynamics algorithms[M].Kulwer,1987.
    [2]
    赵祚喜,宋俊文,谈婷,等.一种全站仪免置平实现的刚体六自由度测量方法[J].机械工程学报,2019,55(24):28-36.
    [3]
    MARKLEY F L,CRASSIDIS J L.Fundamentals of spacecraft orientation determination and control[M].Springer New York,2014.
    [4]
    孙海文,欧阳中辉,王彦.一种改进的基于GPS某型舰船姿态解算算法[J].舰船科学技术,2015(12):117-122.
    [5]
    SAUER J,ELMAR S.A constraint-based approach to rigid body dynamics for virtual reality applications[C]//Proceeding of the ACM Symposium on Virtual Reality Software and Technology,1998:153-162.DOI: 10.1145/293701.293721.
    [6]
    代桃高,宫帅帅,魏明,等.一种GNSS双天线姿态确定及点位标定方法研究[J].全球定位系统,2019,44(6):110-115.
    [7]
    SIMANEK J,REINSTEIN M,KUBELKA V.Evaluation of the EKF-Based estimation architectures for data fusion in mobile robots[J].IEEE/ASME transaction on mechatronics,2014,20(2):985-990.DOI: 10.1109/TMECH.2014.2311416.
    [8]
    陈允约,刘智敏.GPS罗经测姿方法与展望[J].全球定位系统,2013,38(1):67-72.
    [9]
    刘志俭,赵健康.基于几何约束的GPS测姿系统的原理和实验[J].全球定位系统,2003(3):14-18.
    [10]
    邱志强,陆宏伟,于起峰.基于图像的三维刚体运动估计算法比较[J].光学技术,2004,30(1)109-112.
    [11]
    CHEPURI S P,LEUS G,VEEN A G V D.Position and orientation estimation of a rigid body:Rigid body localization[C]//2013 IEEE International Conference on Acoustics,Speech and Signal Processing.2013:5185-5189.DOI: 10.1109/ICASSP.2013.6638651.
    [12]
    CHEPURIS P, LEUS G,VEEN A G V D.Rigid body localization using sensor networks[J].IEEE transactions on signal processing,2014,62(18):4911-4924.DOI: 10.1109/TSP.2014.2336621.
    [13]
    范迪,林自豪.基于多重信号分类的空间谱估计算法研究[J].中国无线电,2018(6):49-51.
    [14]
    任生凯,刘尚钞,王开斌,等.相干信源DOA估计的一种改进空间谱估计算法[J].航天电子对抗,2019,35(1):40-43,48.
    [15]
    MESTRE X,LAGUNAS M Á,Modified subspace algorithms for DoA estimation with large arrays[J].IEEE transactions on signal processing,2008,56(2):598-614.DOI: 10.1109/TSP.2007.907884.
    [16]
    严尔军,张强.基于多维尺度法和卡尔曼滤波的机器人传感器网络跟踪定位[J].中国工程机械学报,2018,16(6):486-491.
    [17]
    ZHOU B,AI L,DONG X,et al.DoA-Based rigid body localization adopting single base station[J].IEEE communications letters,2019,23(3):494-497.DOI: 10.1109/LCOMM.2019.2892738.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (262) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return