GNSS World of China

Volume 45 Issue 6
Dec.  2020
Turn off MathJax
Article Contents
YANG Qiuwei, CHEN Hua, ZHOU Cong, LI Cuihong. Singular value correction method for ill conditioned least squares problem in survey adjustment[J]. GNSS World of China, 2020, 45(6): 16-20. doi: 10.13442/j.gnss.1008-9268.2020.06.003
Citation: YANG Qiuwei, CHEN Hua, ZHOU Cong, LI Cuihong. Singular value correction method for ill conditioned least squares problem in survey adjustment[J]. GNSS World of China, 2020, 45(6): 16-20. doi: 10.13442/j.gnss.1008-9268.2020.06.003

Singular value correction method for ill conditioned least squares problem in survey adjustment

doi: 10.13442/j.gnss.1008-9268.2020.06.003
  • Received Date: 2020-08-04
    Available Online: 2021-04-09
  • To solve the ill conditioned least squares problem in survey adjustment, a new singular value correction method is proposed in this paper based on a unified singular value correction formula. The proposed method overcomes the shortcomings of the existing methods, which need to determine the threshold value of singular value truncation or modification. The proposed method is simple and fast in calculation with high accuracy, and does not increase the amount of the computation cost. In addition, the proposed method has strong universality and no special requirements for the dimension and rank of the coefficient matrix of the system of equations. It can be applied to the solution of any type of linear system of equations. Two ill conditioned equations are taken as examples to verify the proposed method. The results are compared with the least square solution and the singular value truncation solution. It has been shown that the proposed method is simple and easy to use, and can obtain more accurate results than the singular value truncation method.

     

  • loading
  • [1]
    于冬冬,王乐洋.病态总体最小二乘问题的谱修正迭代法[J].大地测量与地球动力学,2015,35(4):702-706.
    [2]
    杨振,张耀明,周爱华,等.基本解法求解反问题的正则化方法[J].山东理工大学学报(自然科学版),2015(6):20-24.
    [3]
    郭惠勇,罗乐,盛懋,等.基于岭估计和L曲线的损伤识别技术研究[J].振动与冲击,2015,34(4):200-204.
    [4]
    葛旭明,伍吉仓.病态总体最小二乘问题的广义正则化[J].测绘学报,2012,41(3):372-377.
    [5]
    王乐洋,于冬冬.病态总体最小二乘问题的虚拟观测解法[J].测绘学报,2014,43(6):575-581.
    [6]
    HANSEN P C.Truncated singular value decomposition solutions to discrete ill-posed problems with ill-determined numerical rank[M].SIAM journal on scientific and statistical computing,1990,11(3):503-518.DOI: 10.1137/0911028.
    [7]
    李睿,于德介,曾威.模式密度方法在结构异常检测中的应用研究[J].振动工程学报,2008,21(4):343-348.
    [8]
    熊红霞,刘沐宇,刘可文.小波变换与SVD方法在结构损伤监测中的应用[J].公路,2009(3):96-101.
    [9]
    付玉立,李全海.病态问题中奇异值修正法初探[J].海洋测绘,2011,31(2):42-44,48.
    [10]
    顾勇为,归庆明.TSVD解算中选择截断参数的新方法[J].测绘科学技术学报,2010,27(3):176-179.
    [11]
    林东方,朱建军,宋迎春,等.正则化的奇异值分解参数构造法[J].2016,45(8):883-889.
    [12]
    吴太旗,邓凯亮,黄谟涛,等.一种改进的不适定问题奇异值分解法[J].武汉大学学报(信息科学版),2011,36(8):900-903.
    [13]
    卢波.病态问题的奇异值分解算法与比较[J].测绘信息与工程,2011,36(4):19-22.
    [14]
    杨文采.地球物理反演和地震层析成像[M].北京:地质出版社,1989.
    [15]
    王振杰.大地测量中不适定问题的正则化解法研究[D].武汉:中国科学院测量与地球物理研究所,2003.
    [16]
    王振杰,欧吉坤.一种新的病态问题奇异值修正方案及其在大地测量中的应用[J].自然科学进展,2004,14(6):672-676.
    [17]
    LU T D,NING J S.Total least squares adjustment theory and its applications[M].Beijing:China science and technology press,2011:89-102.
    [18]
    DENG X S,YIN L B,PENG S C,et al.An iterative algorithm for solving ill-conditioned linear least squaress problems[J].Geodesy and geodynamics,2015,6(6):453-459.DOI: 10.1016/j.geog.2015.06.004.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (335) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return