GNSS World of China
Citation: | YAN Song, WU Fei, ZHU Hai, LU Wenxia, HU Rui, NIE Dawei. Robust perception algorithm for indoor and outdoor scenes based on signal of opportunity[J]. GNSS World of China, 2020, 45(4): 63-71. doi: 10.13442/j.gnss.1008-9268.2020.04.010 |
[1] |
SHTAR G, SHAPIRA B, ROKACH L. Clustering Wi-Fi fingerprints for indooroutdoor detection[J]. Wireless networks, 2019, 25(3): 1341-1359.
|
[2] |
CANOVAS O, LOPEZ-DE-TERUEL P E,RUIZ A. Detecting indoor/outdoor places using WiFi signals and adaBoost[J]. IEEE sensors journal, 2017, 17(5): 1443-1453. DOI: 10.1109/JSEN.2016.2640358.
|
[3] |
HUANG H Z, ZENG Q H,CHEN R Z, et al. Seamless navigation methodology optimized for indoor/outdoor detection based on WiFi[C]// 2018 Ubiquitous Positioning, Indoor Navigation and Location-Based Services (UPINLBS),2018. DOI: 10.1109/UPINLBS.2018.8559940.
|
[4] |
邹德岳. 异构无线系统室内外无缝定位技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
|
[5] |
ALI M, ELBATT T, YOUSSEF M. Senseio: realistic ubiquitous indoor outdoor detection system using smartphones[J]. IEEE sensors journal, 2018, [JP2]18(9): 3684-3693. DOI: 10.1109/JSEN.2018.2810193.
|
[6] |
陈锦华. 泛在环境下的无缝定位技术研究[D]. 北京: 北京交通大学, 2017.
|
[7] |
蔡劲, 蔡成林, 张首刚, 等. GNSS/地磁组合的室内外无 缝定位平滑过渡方法[J]. 测绘通报, 2018(2): 30-34.
|
[8] |
郭凯旋, 卢彦霖, 冯涛, 等. 基于智能切换算法的室内外无缝定位技术研究[J]. 传感器与微系统, 2018, 37(7): 49-51,55.
|
[9] |
GAO H, GROVES P D. Environmental context detection for adaptive navigation using GNSS measurements from a smartphone[J]. Navigation, 2018, 65(5): 99-116. DOI: 10.1002/navi.221.
|
[10] |
ZHU Y D, LUO H Y, WANG Q, et al. A fast indoor/outdoor transition detection algorithm based on machine learning[J]. Sensors, 2019, 19(4): 786-809. DOI: 10.3390/s19040786.
|
[11] |
CHEN K Y, TAN G. SatProbe: low-energy and fast indoor/outdoor detection based on raw GPS processing[C]//IEEE INFOCOM 2017-IEEE Conference on Computer Communications. Atlanta, GA, USA: IEEE, 2017: 1-9. DOI: 10.1109/INFOCOM.2017.8057095.
|
[12] |
ZENG Q H, WANG J X, MENG Q, et al. Seamless pedestrian navigation methodology optimized for indoor/outdoor detection[J]. IEEE sensors journal, 2018, 18(1): 363-374. DOI: 10.1109/JSEN.2017.2764509.
|
[13] |
LEE B, LIM C, LEE K. Classification of indoor-outdoor location using combined global positioning system (GPS) and temperature data for personal exposure assessment[J]. Environmental health and preventive medicine, 2017, 22(1):29. DOI 10.1186/s12199-017-0637-4.
|
[14] |
ASHRAF I, HUR S J, PARK Y W. MagIO: magnetic field strength based indoor-outdoor detection with a commercial smartphone[J]. Micromachines, 2018, 9(10): 534. DOI: 10.3390/mi9100534.
|
[15] |
ZOU H, JIANG H, LUO Y W, et al. BlueDetect: an iBeacon-Enabled scheme for accurate and energy-efficient indoor-outdoor detection and seamless location-based service[J]. Sensors, 2016, 16(2): 268. DOI: 10.3390/s16020268.
|
[16] |
SUNG R, JUNG S-H, HAN D. Sound based indoor and outdoor environment detection for seamless positioning handover[J]. ICT express, 2015, 1(3): 106-109. DOI: 10.1016/j.icte.2016.02.001.
|
[17] |
KELISHOMI A E, GARMABAKI A H S, BAHAGHIGHAT M, et al. Mobile user indoor-outdoor detection through physical daily activities[J]. Sensors, 2019, 19(3): 511. DOI: 10.3390/s19030511.
|
[18] |
SAFFAR I,ALBERI-MOREL M L,SINGH K D,et al. Machine learning with partially labeled data for indoor outdoor detection[C]//2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC), 2019. DOI: 10.1109/CCNC.2019.8651736.
|
[19] |
SAFFAR I,ALBERI-MOREL M L,SINGH K D, et al. Semi-supervised deep learning-based methods for indoor outdoor detection[C]//IEEE International Conference on Communications (ICC), 2019. DOI: 10.1109/ICC.2019.8761297.
|
[20] |
SPECHT D F. Probabilistic neural networks for classification, mapping, or associative memory[C]//IEEE 1988 International Conference on Neural Networks,1988. DOI: 10.1109/ICNN.1988.23887.
|