GNSS World of China

Volume 45 Issue 4
Aug.  2020
Turn off MathJax
Article Contents
YAN Song, WU Fei, ZHU Hai, LU Wenxia, HU Rui, NIE Dawei. Robust perception algorithm for indoor and outdoor scenes based on signal of opportunity[J]. GNSS World of China, 2020, 45(4): 63-71. doi: 10.13442/j.gnss.1008-9268.2020.04.010
Citation: YAN Song, WU Fei, ZHU Hai, LU Wenxia, HU Rui, NIE Dawei. Robust perception algorithm for indoor and outdoor scenes based on signal of opportunity[J]. GNSS World of China, 2020, 45(4): 63-71. doi: 10.13442/j.gnss.1008-9268.2020.04.010

Robust perception algorithm for indoor and outdoor scenes based on signal of opportunity

doi: 10.13442/j.gnss.1008-9268.2020.04.010
  • Publish Date: 2020-08-15
  • Considering that the development of navigation application service requirements for the combination of indoor and outdoor scenes and the problems of low recognition stability and the low recognition accuracy of existing indoor and outdoor scenes perception methods, this paper proposes a robust sensing algorithm for indoor and outdoor scenes based on signal of opportunity. The signal of opportunity is used to reduce the single signal recognition error. In order to improve the classification accuracy of the traditional AdaBoost algorithm for imbalanced data sets, the Probabilistic Neural Network(PNN) is used as the training weak classifier, and the entropy weight method is introduced to modify the weight of the weak classifier generated by iteration to improve the classification accuracy of the strong classifier. Experimental verification in real scenarios shows that the algorithm in this paper performs best in indoor and outdoor scene perception using signal of opportunity: WiFi signal, available GNSS stars, and light intensity in indoor and outdoor environments. For scenes switching in different angle directions, the recognition accuracy of 98% can be achieved with a false alarm rate of only 1.7%, which verifies the accuracy and robustness of the algorithm proposed in this paper.

     

  • loading
  • [1]
    SHTAR G, SHAPIRA B, ROKACH L. Clustering Wi-Fi fingerprints for indooroutdoor detection[J]. Wireless networks, 2019, 25(3): 1341-1359.
    [2]
    CANOVAS O, LOPEZ-DE-TERUEL P E,RUIZ A. Detecting indoor/outdoor places using WiFi signals and adaBoost[J]. IEEE sensors journal, 2017, 17(5): 1443-1453. DOI: 10.1109/JSEN.2016.2640358.
    [3]
    HUANG H Z, ZENG Q H,CHEN R Z, et al. Seamless navigation methodology optimized for indoor/outdoor detection based on WiFi[C]// 2018 Ubiquitous Positioning, Indoor Navigation and Location-Based Services (UPINLBS),2018. DOI: 10.1109/UPINLBS.2018.8559940.
    [4]
    邹德岳. 异构无线系统室内外无缝定位技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
    [5]
    ALI M, ELBATT T, YOUSSEF  M. Senseio: realistic ubiquitous indoor outdoor detection system using smartphones[J]. IEEE sensors journal, 2018, [JP2]18(9): 3684-3693. DOI: 10.1109/JSEN.2018.2810193.
    [6]
    陈锦华. 泛在环境下的无缝定位技术研究[D]. 北京: 北京交通大学, 2017.
    [7]
    蔡劲, 蔡成林, 张首刚, 等. GNSS/地磁组合的室内外无 缝定位平滑过渡方法[J]. 测绘通报, 2018(2): 30-34.
    [8]
    郭凯旋, 卢彦霖, 冯涛, 等. 基于智能切换算法的室内外无缝定位技术研究[J]. 传感器与微系统, 2018, 37(7): 49-51,55.
    [9]
    GAO H, GROVES P D. Environmental context detection for adaptive navigation using GNSS measurements from a smartphone[J]. Navigation, 2018, 65(5): 99-116. DOI: 10.1002/navi.221.
    [10]
    ZHU Y D, LUO H Y, WANG Q, et al. A fast indoor/outdoor transition detection algorithm based on machine learning[J]. Sensors, 2019, 19(4): 786-809. DOI: 10.3390/s19040786.
    [11]
    CHEN K Y, TAN G. SatProbe: low-energy and fast indoor/outdoor detection based on raw GPS processing[C]//IEEE INFOCOM 2017-IEEE Conference on Computer Communications. Atlanta, GA, USA: IEEE, 2017: 1-9. DOI: 10.1109/INFOCOM.2017.8057095.
    [12]
    ZENG Q H, WANG J X, MENG Q, et al. Seamless pedestrian navigation methodology optimized for indoor/outdoor detection[J]. IEEE sensors journal, 2018, 18(1): 363-374. DOI: 10.1109/JSEN.2017.2764509.
    [13]
    LEE B, LIM C, LEE K. Classification of indoor-outdoor location using combined global positioning system (GPS) and temperature data for personal exposure assessment[J]. Environmental health and preventive medicine, 2017, 22(1):29. DOI 10.1186/s12199-017-0637-4.
    [14]
    ASHRAF I, HUR S J, PARK Y W. MagIO: magnetic field strength based indoor-outdoor detection with a commercial smartphone[J]. Micromachines, 2018, 9(10): 534. DOI: 10.3390/mi9100534.
    [15]
    ZOU H, JIANG H, LUO Y W, et al. BlueDetect: an iBeacon-Enabled scheme for accurate and energy-efficient indoor-outdoor detection and seamless location-based service[J]. Sensors, 2016, 16(2): 268. DOI: 10.3390/s16020268.
    [16]
    SUNG R, JUNG S-H, HAN D. Sound based indoor and outdoor environment detection for seamless positioning handover[J]. ICT express, 2015, 1(3): 106-109. DOI: 10.1016/j.icte.2016.02.001.
    [17]
    KELISHOMI A E, GARMABAKI A H S, BAHAGHIGHAT M, et al. Mobile user indoor-outdoor detection through physical daily activities[J]. Sensors, 2019, 19(3): 511. DOI: 10.3390/s19030511.
    [18]
    SAFFAR I,ALBERI-MOREL M L,SINGH K D,et al. Machine learning with partially labeled data for indoor outdoor detection[C]//2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC), 2019. DOI: 10.1109/CCNC.2019.8651736.
    [19]
    SAFFAR I,ALBERI-MOREL M L,SINGH K D, et al. Semi-supervised deep learning-based methods for indoor outdoor detection[C]//IEEE International Conference on Communications (ICC), 2019. DOI: 10.1109/ICC.2019.8761297.
    [20]
    SPECHT D F. Probabilistic neural networks for classification, mapping, or associative memory[C]//IEEE 1988 International Conference on Neural Networks,1988. DOI: 10.1109/ICNN.1988.23887.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (273) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return