GNSS World of China
Citation: | GUO Xuzhou, WANG Wenyi. The analysis of the relationship between GNSS-induced spoofing code phase and spoofing-to-signal ratio[J]. GNSS World of China, 2025, 50(2): 118-125. DOI: 10.12265/j.gnss.2024218 |
The GNSS signals are weak, their signal structure is publicly available, making them vulnerable to spoofing attacks. These attacks can occur while the receiver maintains locked on the tracking loop and are often difficult to be detected in real time. To investigate the spoofing process and enhance defense mechanisms, this study analyzes the impact of spoofing signals on the delay-locked loop (DLL) of the receiver, particularly the code phase tracking process. Under the assumption of frequency-locking mode, the relationship between the relative code phase difference of the spoofing signal and the authentic signal, as well as the locally generated pseudo-random code, is derived. This relationship is also shown to depend on the spoofing-to-signal ratio (SSR). Theoretical results are verified through loop and GNSS receiver simulations, confirming the validity of the analysis. This research provides theoretical support for improving the security and defense capabilities of GNSS systems.
[1] |
BIAN S, HU Y, JI B. Research status and prospect of GNSS anti-spoofing technology[J]. Scientia sinica informationis, 2017, 47(3): 275-287. DOI: 10.1360/N112016-00073
|
[2] |
JAFARNIA-JAHROMI A, BROUMANDAN A, NIELSEN J, et al. GPS vulnerability to spoofing threats and a review of antispoofing techniques[J]. International journal of navigation and observation, 2012(1): 127072. DOI: 10.1155/2012/127072
|
[3] |
AMIN M G, CLOSAS P, BROUMANDAN A, et al. Vulnerabilities, threats, and authentication in satellite-based navigation systems[J]. Proceedings of the IEEE, 2016, 104(6): 1169-1173. DOI: 10.1109/JPROC.2016.2550638
|
[4] |
JAFARNIA-JAHROMI A, BROUMANDAN A, DANESHMAND S, et al. Vulnerability analysis of civilian L1/E1 GNSS signals against different types of interference[C]//Proceedings of the 28th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2015), 2015: 3262-3271.
|
[5] |
吴长柯, 侯强. 无人机GNSS诱骗与反诱骗技术论述[J]. 全球定位系统, 2020, 45(3): 37-40.
|
[6] |
PHELTS R E. Multicorrelator techniques for robust mitigation of threats to GPS signal quality[D]. USA: Stanford University, 2001.
|
[7] |
GAO Y J, LV Z W, ZHANG L D. Asynchronous lift-off spoofing on satellite navigation receivers in the signal tracking stage[J]. IEEE sensors journal, 2020, 20(15): 8604-8613. DOI: 10.1109/JSEN.2020.2984525
|
[8] |
PSIAKI M L, HUMPHREYS T E. GNSS spoofing and detection[J]. Proceedings of the IEEE, 2016, 104(6): 1258-1270. DOI: 10.1109/JPROC.2016.2526658
|
[9] |
PINI M, FANTINO M, CAVALERI A, et al. Signal quality monitoring applied to spoofing detection[C]//Proceedings of the 24th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2011), 2011: 1888-1896.
|
[10] |
WANG W Y, HOU Y L. GNSS induced spoofing detection based on dynamic three-dimensional correlation function[J]. IEEE transactions on instrumentation and measurement, 2024, 73. DOI: 10.1109/TIM.2024.3472768
|
[11] |
邓敏, 廖欣璐, 郭莹莹, 等. 基于新型SQM的GNSS欺骗式干扰检测技术[J]. 全球定位系统, 2024, 49(4): 56-65. DOI: 10.12265/j.gnss.2024017
|
[12] |
赵慎, 胡勇, 李世玲, 等. 基于PCS与Ratio融合的GNSS欺骗检测方法研究[J]. 全球定位系统, 2024, 49(4): 99-106.
|
[13] |
赵慎, 廖一霏, 李世玲, 等. 多相关器联合功率GNSS欺骗干扰检测方法研究[J]. 全球定位系统, 2024, 49(4): 66-74. DOI: 10.12265/j.gnss.2023235
|
[14] |
ZHOU M, LIU Y, LIN X, et al. Performance analysis of spoofing signal ratio for receiver-spoofer[C]//Proceedings of the 2017 International Technical Meeting of The Institute of Navigation, 2017: 898-911.
|
[15] |
WANG Y W, KOU Y H, HUANG Z G. Necessary condition for the success of synchronous GNSS spoofing[J]. Chinese journal of electronics, 2023, 32(3): 438-452. DOI: 10.23919/cje.2021.00.307
|
[16] |
谢钢. GPS原理与接收机设计[M]. 北京: 电子工业出版社, 2009.
|
[17] |
申成良. GPS接收机抗欺骗式干扰实验研究[D]. 成都: 电子科技大学, 2018.
|