GNSS World of China
Citation: | TIAN Zongzheng, HUANG Xin, TAO Changpeng. Particle filter resampling-based GNSS multipath correction method[J]. GNSS World of China, 2024, 49(6): 36-46. DOI: 10.12265/j.gnss.2024090 |
Multipath is a critical factor hindering the provision of high-precision satellite positioning services. Notably, current multipath models have failed to effectively address the challenges posed by noise distribution and processing timeliness. In this paper, we introduce a novel correction method for GNSS pseudorange multipath, leveraging particle filter resampling. Initially, we establish the initial state space model of the particle filter, utilizing the original pseudorange multipath sequence. Subsequently, we consider the noise propagation during the particle update process and predict the distribution of particles and their weights at the subsequent time step. Crucially, we update the multipath particles, taking into account the satellite elevation angle, to obtain a weighted and sliding output of the single epoch multipath delay. Analysis of MGEX static observation data reveals that our proposed GNSS multipath correction method significantly improves the STD by 59.2%, 58%, 61.7%, and 59.8% for BDS, GPS, GLONASS, and Galileo pseudorange multipath, respectively. The PPP positioning accuracy has undergone significant enhancements, recording improvements of 10.68%, 11.95%, and 26.13% in the E, N, and U directions, respectively. The accuracy of dynamic positioning in the E, N, and U directions underwent respective enhancements of 5.9%, 1.1%, and a substantial 53.4%. Consequently, the proposed correction method for addressing GNSS multipath effects holds substantial significance in augmenting the performance of location services and plays a pivotal role in enhancing data preprocessing models.
[1] |
ZHAN W, HE X F, JIA D Z, et al. Mitigation of multipath effects in GPS and BDS positioning using window matching method based sidereal filtering[J]. GPS solutions, 2022(57): 427-446. DOI: 10.1007/s40328-022-00384-6
|
[2] |
LIU Z F, TIAN Y M, XIONG W H, et al. A local filtering approach to mitigating the GNSS multipath effects in relative precise positioning considering the multipath spatial correlation[J]. Advances in space research, 2024, 74(6): 2709-2727. DOI: 10.1016/j.asr.2024.03.017
|
[3] |
ZHANG Z T. Code and phase multipath mitigation by using the observation-domain parameterization and its application in five-frequency GNSS ambiguity resolution[J]. GPS solution, 2021(25): 144. DOI: 10.1007/s10291-021-01179-y
|
[4] |
PAN Y X, MOLLER G, SOJA B. Machine learning-based multipath modeling in spatial domain applied to GNSS short baseline processing[J]. GPS solution, 2024, 28(1): 9. DOI: 10.1007/s10291-023-01553-y
|
[5] |
ZHANG Z T, YUAN H J, LI B F, et al. Feasibility of easy-to-implement methods to analyze systematic errors of multipath, differential code bias, and inter-system bias for low-cost receivers[J]. GPS solution, 2021, 25(3): 1-14. DOI: 10.1007/s10291-021-01149-4
|
[6] |
TIAN Y M, LIU Z F, LIN M, et al. Modelling and mitigation of GNSS multipath effects by least-squares collocation considering spatial autocorrelation[J]. Journal of geodesy, 2023(97): 37. DOI: 10.1007/s00190-023-01726-0
|
[7] |
WANNINGER L, BEER S. BeiDou satellite-induced code pseudorange variations: diagnosis and therapy[J]. GPS solution, 2015(19): 639-648. DOI: 10.1007/s10291-014-0423-3
|
[8] |
王颖喆, 陶贤露, 朱锋, 等. 利用智能手机实现GNSS原始观测值的高精度差分定位[J]. 武汉大学学报(信息科学版), 2021, 46(12): 1941-1950.
|
[9] |
胡超, 王潜心, 郭忠臣, 等. 一种基于GNSS全系统全频点观测的多路径修正及定位模型[J]. 武汉大学学报(信息科学版), 2023: 1-13.
|
[10] |
龚学文, 王甫红. 星载GPS伪距多路径误差与观测噪声对自主定轨的影响分析[J]. 武汉大学学报(信息科学版), 2018, 43(7): 1048-1055.
|
[11] |
吴涛, 胡艳霞, 田甜, 等. GNSS干扰定位技术分析[J]. 全球定位系统, 2023, 48(5): 103-111. DOI: 10.12265/j.gnss.2023100
|
[12] |
ZENG J W, ZHANG Z T, HE X F, et al. Real-time GNSS multiple cycle slip detection and repair based on a controllable geometry-based method in relative positioning[J]. Measurement, 2023(216): 112940. DOI: 10.1016/j.measurement.2023.112940
|
[13] |
张芮, 熊永良, 雷飞. 一种融合轨检信息的GNSS动态单历元多路径误差提取方法[J]. 武汉大学学报(信息科学版), 2021, 46(6): 905-912.
|
[14] |
LU R, CHEN W, LI Z, et al. An improved joint modeling method for multipath mitigation of GPS, BDS-3, and Galileo overlapping frequency signals in typical environments[J]. Journal of geodesy, 2023, 97(10): 95. DOI: 10.57757/IUGG23-3840
|
[15] |
QIU W Q, ZENG Q H, XU R, et al. A multipath mitigation algorithm for GNSS signals based on the steepest descent approach[J]. Satellite navigation, 2022, 3(14): 80-90. DOI: 10.1007/s00190-023-01788-0
|
[16] |
LI X R, WANG L, QU X Y, et al. A GPS multipath mitigation method in coordinate-domain considering the effects of gross errors and missing data[J]. Measurement, 2024(225): 114035. DOI: 10.1016/j.measurement.2023.114035
|
[17] |
LU R, CHEN W, DONG D N, et al. Multipath mitigation in GNSS precise point positioning based on trend-surface analysis and multipath hemispherical map[J]. GPS solution, 2021, 25(3):14. DOI: 10.1007/s10291-021-01156-5
|
[18] |
LI X Z, XIONG Y L, XU S G, et al. A multipath error reduction method for BDS using Tikhonov regularization with parameter optimization[J]. Remote sensing, 2023, 15(13): 3400. DOI: 10.3390/rs15133400
|
[19] |
周仁宇, 胡志刚, 蔡洪亮, 等. 使用抛物面定向天线分析北斗三号星上伪距和载波测距偏差[J]. 武汉大学学报(信息科学版), 2021, 46(9): 1298-1308.
|
[20] |
SUZUKI T, MATSUO K, AMANO Y. Rotating GNSS antennas: simultaneous LOS and NLOS multipath mitigation[J]. GPS solution, 2020, 24(3): 86. DOI: 10.1007/s10291-020-01006-w
|
[21] |
PETER S, GARCIA-ASENJO L, SERGIO B. Optimal combination and reference functions of signal-to-noise measurements for GNSS multipath detection[J]. Measurement science and technology, 2019, 30(4):1-13. DOI: 10.1088/1361-6501/ab05ae
|
[22] |
何聪聪, 王中元, 张坦. 北斗观测数据质量及动态PPP性能分析[J]. 全球定位系统, 2024, 49(1): 120-126. DOI: 10.12265/j.gnss.2023183
|
[23] |
ZHANG Z T, LI B F, GAO Y, et al. Real-time carrier phase multipath detection based on dual-frequency C/N0 data[J]. GPS solution, 2019, 23(7): 1-13. DOI: 10.1007/s10291-018-0799
|
[24] |
ZOU X, LI Z Y, WANG Y W, et al. Multipath error fusion modeling methods for multi-GNSS[J]. Remote sensing, 2021, 13(15): 2925. DOI: 10.3390/rs13152925
|
[25] |
FUHRMANN T, LUO X G, KNOPFLER A, et al. Generating statistically robust multipath stacking maps using congruent cells[J]. GPS solution, 2015, 19(1): 83-92. DOI: 10.1007/s10291-014-0367-7
|
[26] |
ZHANG X, ZHANG B C, YUAN Y B, et al. Extending multipath hemispherical model to account for time-varying receiver code biases[J]. Advances in space research, 2020(65): 650-662. DOI: 10.1016/j.asr.2019.11.003
|
[27] |
张智超, 贾小林, 焦文海, 等. 抗差Vondrak滤波方法在时间频率传递中的应用[J]. 全球定位系统, 2024, 29(2):23-29.
|
[28] |
ZHENG D W, ZHONG P, DING X L, et al. Filtering GPS time-series using a Vondrak filter and cross-validation[J]. Journal of geodesy, 2005(79): 363-369. DOI: 10.1007/s00190-005-0474-x
|
[29] |
王笑蕾, 何秀凤, 陈殊, 等. 地基GNSS-IR风速反演原理及方法初探[J]. 测绘学报, 2021, 50(10): 1298-1307. DOI: 10.11947/j.AGCS.2021.20200586
|
[30] |
LIN X, LI W, LI S D, et al. Combined adaptive robust Kalman filter algorithm[J]. Measurement science and technology, 2021, 32(7). DOI: 10.1088/1361-6501/abf57c
|
[31] |
王宪, 袁洪. 基于粒子滤波的GPS多径估计[J]. 控制与决策, 2010, 25(8): 1139-1143, 1148.
|
[32] |
宫轶松, 归庆明, 李保利, 等. 基于均值漂移的粒子滤波算法设计及其在导航数据处理中的应用[J]. 测绘学报, 2011(40): 120-125, 132.
|
[33] |
种衍文, 王泽文, 陈蓉, 等. 一种多特征自适应融合的粒子滤波红外目标跟踪方法[J]. 武汉大学学报(信息科学版), 2016, 14(5): 598-640.
|
[34] |
褚鼎立, 陈红, 王旭光. 基于自适应权重和模拟退火的鲸鱼优化算法[J]. 电子学报, 2019, 47(5): 992-999.
|