GNSS World of China
Citation: | LU Houxian, LI Kai, LI Li, HE Qimin, YU Hang, DONG Zhounan. Research on precipitable water vapor prediction method based on lightGBM algorithm[J]. GNSS World of China. doi: 10.12265/j.gnss.2024079 |
[1] |
ZHAO Q, LIU Y, YAO W, et al. Hourly rainfall forecast model using supervised learning algorithm[J]. IEEE transactions on geoscience and remote sensing, 2021, 60: 1-9.
|
[2] |
陈祥明, 王宝宝, 李若瑜, 等. 不同加权平均温度模型对大气可降水量影响分析[J]. 全球定位系统, 2023, 48(3): 72-76. DOI: 10.12265/j.gnss.2023016
|
[3] |
BALDYSZ Z, NYKIEL G. Improved empirical coefficients for estimating water vapor weighted mean temperature over europe for GNSS applications[J]. Remote sensing, 2019, 11(17): 1995. DOI: 10.3390/rs11171995
|
[4] |
刘晨, 郑南山, 张玉振. 多因子加权平均温度模型研究[J]. 中国科技论文, 2018, 13(15): 1743-1748. DOI: 10.3969/j.issn.2095-2783.2018.15.009
|
[5] |
BEVIS M, BUSINGER S, HERRING T A, et al. GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system[J]. Journal of geophysical research: atmospheres, 1992, 97(D14): 15787-801. DOI: 10.1029/92JD01517
|
[6] |
杨鹏飞, 赵庆志, 苏静,等. 黄土高原地区 PWV 影响因素分析及精度评定[J]. 武汉大学学报 (信息科学版), 2022, 47(9): 1470-1478.
|
[7] |
韦云, 王迅, 王浩, 等. 中国东南沿海地区PWV直接转换模型研究[J]. 大地测量与地球动力学, 2022, 42(7): 750-754.
|
[8] |
易正晖, 王帅民, 王勇, 等. GNSS对流层延迟推算可降水量的季节转换模型研究[J]. 大地测量与地球动力学, 2017, 37(8): 830-834.
|
[9] |
李黎, 宋越, 易金花, 等. 对流层延迟与可降水量直接转换模型研究[J]. 大地测量与地球动力学, 2019, 39(5): 492-495, 501.
|
[10] |
UMAKANTH N, SATYANARAYANA G C, SIMON B, et al. Long-term analysis of thunderstorm-related parameters over Visakhapatnam and Machilipatnam, India[J]. Acta geophysica, 2020(68): 921-32. DOI: 10.1007/s11600-020-00431-2
|
[11] |
CAI M, LI J, LIU L, et al. Weighted mean temperature hybrid models in China based on artificial neural network methods[J]. Remote sensing, 2022, 14(15): 3762. DOI: 10.3390/rs14153762
|
[12] |
JU Y, SUN G, CHEN Q, et al. A model combining convolutional neural network and LightGBM algorithm for ultra-short-term wind power forecasting[J]. IEEE access, 2019(7): 28309-28318. DOI: 10.1109/ACCESS.2019.2901920
|
[13] |
LI K, LI L, HU A, et al. Research on modeling weighted average temperature based on the machine learning algorithms[J]. Atmosphere, 2023, 14(8): 1251. DOI: 10.3390/atmos14081251
|
[14] |
SABER M, BOULMAIZ T, GUERMOUI M, et al. Examining lightGBM and CatBoost models for wadi flash flood susceptibility prediction[J]. Geocarto international, 2022, 37(25): 7462-7487. DOI: 10.1080/10106049.2021.1974959
|
[15] |
池钦, 赵兴旺, 陈健. 几种典型机器学习算法在短临降雨预报分析研究[J]. 全球定位系统, 2022, 47(4): 122-128. DOI: 10.12265/j.gnss.2022039
|
[16] |
MARWITZ J D, DAWSON P J. Department of atmospheric science university of wyoming[C]//The International Symposium on the Qinghai-Xizang Plateau and Mountain Meteorology, F, 2015.
|
[17] |
YANG L, SHAMI A. A lightweight concept drift detection and adaptation framework for IoT data streams[J]. IEEE internet of things magazine, 2021, 4(2): 96-101. DOI: 10.1109/IOTM.0001.2100012
|
[18] |
JIANG P, YE S, LU Y, et al. Development of time-varying global gridded T s–T m model for precise GPS–PWV retrieval[J]. Atmospheric measurement techniques, 2019, 12(2): 1233-1249. DOI: 10.5194/amt-12-1233-2019
|
[19] |
YAO Y, ZHANG B, XU C, et al. Improved one/multi-parameter models that consider seasonal and geographic variations for estimating weighted mean temperature in ground-based GPS meteorology[J]. Journal of geodesy, 2014, 88: 273-82. DOI: 10.1007/s00190-013-0684-6
|
[20] |
YU Z, QU Y, WANG Y, et al. Application of machine-learning-based fusion model in visibility forecast: a case study of Shanghai, China[J]. Remote sensing, 2021, 13(11): 2096. DOI: 10.3390/rs13112096
|
[21] |
CHEN S. K-nearest neighbor algorithm optimization in text categorization[C]//The IOP Conference Series: Earth and EnvironMental Science, F, 2018.
|
[22] |
YONG Z, YOUWEN L, SHIXIONG X. An improved KNN text classification algorithm based on clustering[J]. Journal of computers, 2009, 4(3): 230-237.
|
[23] |
LIU H, XIAO Q, JIAO Z, et al. LightGBM-based prediction of remaining useful life for electric vehicle battery under driving conditions [C]//The 2020 IEEE Sustainable Power and Energy Conference (iSPEC), 2020.
|
[24] |
范頔, 李黎, 刘彦, 等. 长三角地区GNSS可降水量直接转换模型研究[J]. 大地测量与地球动力学, 2021, 41(6): 628-632.
|
[25] |
刘彦, 李黎, 韦晔, 等. 利用CORS站研究多因子分季节可降水量转换模型[J]. 测绘科学, 2021, 46(7): 31-37.
|