GNSS World of China

Volume 49 Issue 3
Jun.  2024
Turn off MathJax
Article Contents
DING Yao, FANG Rongxin, CHEN Guo, HU Bingyan, CHENG Yifan. Spatial signal error and precise point positioning evaluation of Galileo high accuracy service[J]. GNSS World of China, 2024, 49(3): 1-9. doi: 10.12265/j.gnss.2024052
Citation: DING Yao, FANG Rongxin, CHEN Guo, HU Bingyan, CHENG Yifan. Spatial signal error and precise point positioning evaluation of Galileo high accuracy service[J]. GNSS World of China, 2024, 49(3): 1-9. doi: 10.12265/j.gnss.2024052

Spatial signal error and precise point positioning evaluation of Galileo high accuracy service

doi: 10.12265/j.gnss.2024052
  • Received Date: 2024-03-15
    Available Online: 2024-05-14
  • The high accuracy service (HAS) of the Galileo system uses E6B signals to broadcast free precision satellite orbit, clock deviation and code deviation correction information to users around the world, which is of great significance in the field of high-precision real-time satellite applications. Evaluating the spatial signal error and precise point positioning performance is an important prerequisite for using HAS well. Based on the HAS orbital clock products from December 1 to 31, 2023, the root mean square errors (RMSE) of the Galileo satellite orbit products were 4.16 cm, 8.42 cm and 7.62 cm in the radial (R), tangential (A) and normal (C) directions, and 4.52 cm, 9.99 cm and 7.07 cm in GPS, respectively, while the standard deviation (STD) of the Galileo clock products was 0.16 ns and 0.26 ns for GPS. Precise point positioning (PPP) was carried out based on the observation data of 10 stations in Europe. The results show that the positioning accuracy of Galileo in the east (E), north (N) and zenith (U) directions is 6.44 cm, 4.65 cm and 11.36 cm, GPS is 7.42 cm, 5.78 cm and 12.04 cm, and the joint positioning is 4.11 cm, 3.10 cm and 7.56 cm, respectively. The results indicate that HAS can meet the high-precision positioning requirements.

     

  • loading
  • [1]
    MIYA M, FUJITA S, SATO Y, et al. Centimeter level augmentation service (CLAS) in Japanese Quasi-Zenith Satellite System, its user interface, detailed design, and plan[C/OL]//The 29th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2016), 2016: 2864-2869. [2024-03-01]. http://www.ion.org/publications/abstract.cfm?jp=p&articleID=14644
    [2]
    LIU C, GAO W G, LIU T X, et al. Design and implementation of a BDS precise point positioning service[J]. Navation, 2020, 67(4): 875. DOI: 10.1002/navi.392
    [3]
    European Union. Galileo High Accuracy Service Service Definition Document(HAS SDD) [EB/OL]. [2024-03-01]. https://www.gsc-europa.eu/sites/default/files/sites/all/files/Galileo-HAS-SDD_v1.0.pdf
    [4]
    FERNANDEZ-HERNANDEZ I, CHAMORRO-MORENO A, CANCELA-DIAZ S, et al. Galileo high accuracy service: initial definition and performance[J]. GPS solutions, 2022, 26(3): 65. DOI: 10.1007/s10291-022-01247-x
    [5]
    HAUSCHILD A, MONTENBRUCK O, STEIGENBERGER P, et al. Orbit determination of Sentinel-6A using the Galileo high accuracy service test signal[J]. GPS solutions, 2022, 26(4): 120. DOI: 10.1007/s10291-022-01312-5
    [6]
    MAO F Y, LOU Y D, GENG C J, et al. Evaluation of timing and time transfer with PPP using Galileo high accuracy service[J]. Measurement, 2024(226): 114152. DOI: 10.1016/j.measurement.2024.114152
    [7]
    NACIRI N, YI D, BISNATH S, et al. Assessment of Galileo high accuracy service (HAS) test signals and preliminary positioning performance[J]. GPS solutions, 2023, 27(2): 73. DOI: 10.1007/s10291-023-01410-y
    [8]
    ANGRISANO A, ASCIONE S, CAPPELLO G, et al. Application of “Galileo high accuracy service” on single-point positioning[J]. Sensors, 2023, 23(9): 4223. DOI: 10.3390/s23094223
    [9]
    ZHOU P, XIAO G R, DU L. Initial performance assessment of Galileo high accuracy service with software-defined receiver[J]. GPS solutions, 2023, 28(1): 2. DOI: 10.1007/s10291-023-01540-3
    [10]
    MARTINI I, SUSI M, CUCCHI L, et al. Galileo high accuracy service performance and anomaly mitigation capabilities[J]. GPS solutions, 2023, 28(1): 25. DOI: 10.1007/s10291-023-01555-w
    [11]
    FERNÁNDEZ-HERNÁNDEZ I, SENNI T, BORIO D, et al. High-parity vertical reed-solomon codes for long GNSS high-accuracy messages[J]. Navigation, 2020, 67(2): 365-378. DOI: 10.1002/navi.357
    [12]
    HORST O, KIRKKO-JAAKKOLA M, MALKAMÄKI T, et al. HASlib: an open-source decoder for the Galileo high accuracy service[C]//The 35th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2022)Denver, Colorado, 2022: 2625-2633. DOI: 10.33012/2022.18508
    [13]
    MONTENBRUCK O, STEIGENBERGER P, HAUSCHILD A. Broadcast versus precise ephemerides: a multi-GNSS perspective[J]. GPS solutions, 2015, 19(2): 321-333. DOI: 10.1007/s10291-014-0390-8
    [14]
    季锐, 刘长建, 王敏, 等. Galileo高精度定位服务初始服务性能评估[J]. 大地测量与地球动力学, 2024, 44(1): 21-26.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Article Metrics

    Article views (395) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return