• 中国科学引文数据库(CSCD)
  • 中文科技期刊数据库
  • 中国核心期刊(遴选)数据库
  • 日本科学技术振兴机构数据库(JST)
  • 中国学术期刊(网络版)(CNKI)
  • 中国学术期刊综合评价数据库(CAJCED)
  • 中国超星期刊域出版平台
GNSS World of China

GNSS World of China

DING Yao, FANG Rongxin, CHEN Guo, HU Bingyan, CHENG Yifan. Spatial signal error and precise point positioning evaluation of Galileo high accuracy service[J]. GNSS World of China, 2024, 49(3): 1-9. DOI: 10.12265/j.gnss.2024052
Citation: DING Yao, FANG Rongxin, CHEN Guo, HU Bingyan, CHENG Yifan. Spatial signal error and precise point positioning evaluation of Galileo high accuracy service[J]. GNSS World of China, 2024, 49(3): 1-9. DOI: 10.12265/j.gnss.2024052

Spatial signal error and precise point positioning evaluation of Galileo high accuracy service

More Information
  • Received Date: March 14, 2024
  • Available Online: May 13, 2024
  • The high accuracy service (HAS) of the Galileo system uses E6B signals to broadcast free precision satellite orbit, clock deviation and code deviation correction information to users around the world, which is of great significance in the field of high-precision real-time satellite applications. Evaluating the spatial signal error and precise point positioning performance is an important prerequisite for using HAS well. Based on the HAS orbital clock products from December 1 to 31, 2023, the root mean square errors (RMSE) of the Galileo satellite orbit products were 4.16 cm, 8.42 cm and 7.62 cm in the radial (R), tangential (A) and normal (C) directions, and 4.52 cm, 9.99 cm and 7.07 cm in GPS, respectively, while the standard deviation (STD) of the Galileo clock products was 0.16 ns and 0.26 ns for GPS. Precise point positioning (PPP) was carried out based on the observation data of 10 stations in Europe. The results show that the positioning accuracy of Galileo in the east (E), north (N) and zenith (U) directions is 6.44 cm, 4.65 cm and 11.36 cm, GPS is 7.42 cm, 5.78 cm and 12.04 cm, and the joint positioning is 4.11 cm, 3.10 cm and 7.56 cm, respectively. The results indicate that HAS can meet the high-precision positioning requirements.
  • [1]
    MIYA M, FUJITA S, SATO Y, et al. Centimeter level augmentation service (CLAS) in Japanese Quasi-Zenith Satellite System, its user interface, detailed design, and plan[C/OL]//The 29th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2016), 2016: 2864-2869. [2024-03-01]. http://www.ion.org/publications/abstract.cfm?jp=p&;articleID=14644
    [2]
    LIU C, GAO W G, LIU T X, et al. Design and implementation of a BDS precise point positioning service[J]. Navation, 2020, 67(4): 875. DOI: 10.1002/navi.392
    [3]
    European Union. Galileo High Accuracy Service Service Definition Document(HAS SDD) [EB/OL]. [2024-03-01]. https://www.gsc-europa.eu/sites/default/files/sites/all/files/Galileo-HAS-SDD_v1.0.pdf
    [4]
    FERNANDEZ-HERNANDEZ I, CHAMORRO-MORENO A, CANCELA-DIAZ S, et al. Galileo high accuracy service: initial definition and performance[J]. GPS solutions, 2022, 26(3): 65. DOI: 10.1007/s10291-022-01247-x
    [5]
    HAUSCHILD A, MONTENBRUCK O, STEIGENBERGER P, et al. Orbit determination of Sentinel-6A using the Galileo high accuracy service test signal[J]. GPS solutions, 2022, 26(4): 120. DOI: 10.1007/s10291-022-01312-5
    [6]
    MAO F Y, LOU Y D, GENG C J, et al. Evaluation of timing and time transfer with PPP using Galileo high accuracy service[J]. Measurement, 2024(226): 114152. DOI: 10.1016/j.measurement.2024.114152
    [7]
    NACIRI N, YI D, BISNATH S, et al. Assessment of Galileo high accuracy service (HAS) test signals and preliminary positioning performance[J]. GPS solutions, 2023, 27(2): 73. DOI: 10.1007/s10291-023-01410-y
    [8]
    ANGRISANO A, ASCIONE S, CAPPELLO G, et al. Application of “Galileo high accuracy service” on single-point positioning[J]. Sensors, 2023, 23(9): 4223. DOI: 10.3390/s23094223
    [9]
    ZHOU P, XIAO G R, DU L. Initial performance assessment of Galileo high accuracy service with software-defined receiver[J]. GPS solutions, 2023, 28(1): 2. DOI: 10.1007/s10291-023-01540-3
    [10]
    MARTINI I, SUSI M, CUCCHI L, et al. Galileo high accuracy service performance and anomaly mitigation capabilities[J]. GPS solutions, 2023, 28(1): 25. DOI: 10.1007/s10291-023-01555-w
    [11]
    FERNÁNDEZ-HERNÁNDEZ I, SENNI T, BORIO D, et al. High-parity vertical reed-solomon codes for long GNSS high-accuracy messages[J]. Navigation, 2020, 67(2): 365-378. DOI: 10.1002/navi.357
    [12]
    HORST O, KIRKKO-JAAKKOLA M, MALKAMÄKI T, et al. HASlib: an open-source decoder for the Galileo high accuracy service[C]//The 35th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2022)Denver, Colorado, 2022: 2625-2633. DOI: 10.33012/2022.18508
    [13]
    MONTENBRUCK O, STEIGENBERGER P, HAUSCHILD A. Broadcast versus precise ephemerides: a multi-GNSS perspective[J]. GPS solutions, 2015, 19(2): 321-333. DOI: 10.1007/s10291-014-0390-8
    [14]
    季锐, 刘长建, 王敏, 等. Galileo高精度定位服务初始服务性能评估[J]. 大地测量与地球动力学, 2024, 44(1): 21-26.
  • Cited by

    Periodical cited type(2)

    1. 段彩达,杨新平. 基于accuracy技术的计算机网络安全防御系统分析. 电脑知识与技术. 2025(02): 74-77 .
    2. 王家博,魏文波,王广阔,高菊玲,肖茂华,鲁植雄,王光明. 履带式电动微耕机自动导航系统设计与试验. 农业工程学报. 2024(23): 63-72 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (466) PDF downloads (69) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return