GNSS World of China

Turn off MathJax
Article Contents
QIAN Zhigang, YANG Dongsheng, GUO Xiaotong, LI Xue. Research on tropospheric refractivity prediction method based on BP neural network[J]. GNSS World of China. doi: 10.12265/j.gnss.2024043
Citation: QIAN Zhigang, YANG Dongsheng, GUO Xiaotong, LI Xue. Research on tropospheric refractivity prediction method based on BP neural network[J]. GNSS World of China. doi: 10.12265/j.gnss.2024043

Research on tropospheric refractivity prediction method based on BP neural network

doi: 10.12265/j.gnss.2024043
  • Received Date: 2024-03-05
  • Accepted Date: 2024-03-05
  • Available Online: 2024-11-11
  • For satellite navigation systems, positioning errors are affected by the refractive index of the troposphere atmosphere. Improving the accuracy of predicting the refractive index of the troposphere atmosphere can reduce navigation positioning errors. The refractivity of tropospheric atmosphere is the main parameter for studying the influence of the troposphere on the propagation of electromagnetic waves, and the accuracy of its predictions is of great significance for radio systems. In this paper, a tropospheric refractivity prediction method based on BP neural network is proposed, which takes the year, month, day, time, surface refractivity, and altitude as the input of the BP neural network, and the corresponding refractivity at the input altitude as the output of the model. Similarly, by adjusting the input and output parameters, the BP neural network can also be used to predict the refractivity gradient of 1 km near the ground. Finally, the proposed algorithm is calculated and analyzed by using the historical aerial exploration data of Hongkong and Taiyuan, and compared with the methods in the existing papers. The results show that the proposed method has certain advantage in the calculation accuracy.

     

  • loading
  • [1]
    郭立新, 弓树宏, 吴振森, 等. 对流层传播与散射及其对无线系统的影响[M]. 西安: 西安电子科技大学出版社, 2018.
    [2]
    谢益溪. 电波传播—超短波·微波·毫米波[M]. 北京: 电子工业出版社, 1990.
    [3]
    熊皓. 电磁波传播与空间环境[M]. 北京: 电子工业出版社, 2004.
    [4]
    张国亭, 王宏, 朱庆林, 等. 电波大气折射误差精细化修正系统设计与验证[J]. 电波科学学报, 2023, 38(6): 1074-1081. DOI: 10.12265/j.cjors.2022263
    [5]
    HOPFIELD H S. Two-quartic tropospheric refractivity profile for correcting satellite data[J]. Journal of geophysical research, 1969, 74(18): 4487-4499. DOI: 10.1029/JC074i018p04487
    [6]
    焦培南, 张忠治. 雷达环境与电波传播特性[M]. 北京: 电子工业出版社, 2007.
    [7]
    张瑜, 魏山城. HOPFIELD大气模型的精度分析[J]. 河南师范大学学报(自然科学版), 2005, 33(4): 46-49.
    [8]
    陈祥明. 大气折射率剖面模型与电波折射误差修正方法研究[D]. 青岛: 中国海洋大学, 2008.
    [9]
    赵军, 王西京, 张华, 等. 外测数据对流层折射误差修正及精度分析[J]. 飞行器测控学报, 2014, 33(1): 25-29.
    [10]
    林乐科, 赵振维, 张业荣, 等. 利用BP-ANN和地基单站GPS数据反演大气折射率剖面[J]. 微波学报, 2008, 24(6): 39-42.
    [11]
    赵振维, 王宁. 微波辐射计反演大气折射率剖面技术研究[J]. 电波科学学报, 2010, 25(1): 132-138.
    [12]
    宋秉红. BP神经网络模型的电离层预报精度评估[J]. 全球定位系统, 2023, 48(5): 79-82. DOI: 10.12265/j.gnss.2023099
    [13]
    时瑶佳, 吴飞, 朱海, 等. 基于KERAS平台的LSTM模型的对流层延迟预测[J]. 全球定位系统, 2020, 45(6): 115-122.
    [14]
    姚军, 甄梓越, 马宇静. 基于BP神经网络的RSSI测距优化算法[J]. 电波科学学报, 2022, 37(4): 663-669. DOI: 10.12265/j.cjors.2021177
    [15]
    周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.
    [16]
    胡冉冉, 赵振维, 林乐科, 等. 近地面1 km高度处折射率梯度与地面气象参数统计关系的研究[J]. 电波科学学报, 2020, 35(6): 896-901.
    [17]
    黄捷. 电波大气折射误差修正[M]. 北京: 国防工业出版社, 1999.
    [18]
    林乐科. 利用GNSS信号的地基大气折射率剖面反演技术研究[D]. 南京: 南京邮电大学, 2011.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(4)

    Article Metrics

    Article views (19) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return