• 中国科学引文数据库(CSCD)
  • 中文科技期刊数据库
  • 中国核心期刊(遴选)数据库
  • 日本科学技术振兴机构数据库(JST)
  • 中国学术期刊(网络版)(CNKI)
  • 中国学术期刊综合评价数据库(CAJCED)
  • 中国超星期刊域出版平台
GNSS World of China

GNSS World of China

LI Zhizheng, NIE Zhixi, WANG Zhenjie, ZHANG Yuanfan. Improved vision/inertial guidance fusion localization algorithm for vision front-end[J]. GNSS World of China, 2024, 49(3): 20-27. DOI: 10.12265/j.gnss.2024024
Citation: LI Zhizheng, NIE Zhixi, WANG Zhenjie, ZHANG Yuanfan. Improved vision/inertial guidance fusion localization algorithm for vision front-end[J]. GNSS World of China, 2024, 49(3): 20-27. DOI: 10.12265/j.gnss.2024024

Improved vision/inertial guidance fusion localization algorithm for vision front-end

More Information
  • Received Date: January 30, 2024
  • Available Online: May 10, 2024
  • Aiming at the problem of high-precision positioning of mobile robot in Global Navigation Satellite System GNSS denied environment, An adaptive thresholding adaptive and generic accelerated segment test AGAST feature detection algorithm is proposed to improve the visual front-end of a vision/inertial guidance fusion localization system for mobile robots. The algorithm improves the visual odometry computation method by local histogram equalization and adaptive threshold detection, improves the quality of feature point extraction, and enhances the positioning accuracy and stability of visual odometry in complex environments. Visual odometry and inertial navigation system are fused based on factor graph optimization algorithm to realize high-precision positioning of mobile robot. The results show that, compared with the mainstream VINS-Mono algorithm, the proposed algorithm improves the positioning accuracy by 22.8% in the experiment of indoor data set and 59.7% in the experiment of outdoor data set, the proposed algorithm perform better than VINS-Mono algorithm in both two experiments and it can provide better positioning services for mobile robots.
  • [1]
    许智理, 闫倬豪, 李星星, 等. 面向智能驾驶的高精度多源融合定位综述[J]. 导航定位与授时, 2023, 10(3): 1-20.
    [2]
    MOURIKIS A I, ROUMELIOTIS S I. A multi-state constraint Kalman filter for vision-aided inertial navigation[C]//IEEE International Conference on Robotics and Automation, 2007. DOI: 10.1109/ROBOT.2007.364024.
    [3]
    LEUTENEGGER S, LYNEN S, BOSSE M, et al. Keyframe-based visual–inertial odometry using nonlinear optimization[J]. Journal of robotics research, 2015, 34(3): 314-334. DOI: 10.1177/0278364914554813
    [4]
    QIN T, LI P L, SHEN S J. VINS-Mono: a robust and versatile monocular visual-inertial state estimator[J]. IEEE transactions on robotics, 2018, 34(4): 1004-1020. DOI: 10.1109/TRO.2018.2853729
    [5]
    MUR-ARTAL R, MONTIEL J M M, TARDOS J D. ORB-SLAM: a versatile and accurate monocular SLAM system[J]. IEEE transactions on robotics, 2015, 31(5): 1147-1163. DOI: 10.1109/TRO.2015.2463671
    [6]
    赖正洪. 基于视觉惯导融合的单目里程计算法研究[D]. 哈尔滨: 哈尔滨工程大学, 2022.
    [7]
    李成美, 白宏阳, 郭宏伟, 等. 一种改进光流法的运动目标检测及跟踪算法[J]. 仪器仪表学报, 2018, 39(5): 249-256. DOI: 10.19650/j.cnki.cjsi.J1803270
    [8]
    严恭敏, 翁浚. 捷联惯导算法与组合导航原理[M]. 第一版. 西安: 西北工业大学出版社, 2019.
    [9]
    姜柏军, 钟明霞. 改进的直方图均衡化算法在图像增强中的应用[J]. 激光与红外, 2014, 44(6): 702-706.
    [10]
    梁琳, 何卫平, 雷蕾, 等. 光照不均图像增强方法综述[J]. 计算机应用研究, 2010, 27(5): 1625-1628.
    [11]
    龙思源, 张葆, 宋策, 等. 基于改进的加速鲁棒特征的目标识别[J]. 中国光学, 2017, 10(6): 719-725.
    [12]
    CAO M W, JIA W, LI Y J, et al. Fast and robust local feature extraction for 3D reconstruction[J]. Computers and electrical engineering, 2018(71): 657-666. DOI: 10.1016/j.compeleceng.2018.08.012
    [13]
    MAIR E, HAGER G D, BURSCHKA D, et al. Adaptive and generic corner detection based on the accelerated segment test[C]//European Conference on Computer Vision Computer Vision (ECCV 2010), Berlin, Heidelberg: Springer, 2010: 183-196. DOI: 10.1007/978-3-642-15552-9_14.
    [14]
    禹鑫燚, 詹益安, 朱峰, 等. 一种基于四叉树的改进的ORB特征提取算法[J]. 计算机科学, 2018, 45(S2): 222-225.
    [15]
    李国竣, 徐延海, 段杰文, 等. 利用局部自适应阈值方法提取ORB-SLAM特征点[J]. 测绘通报, 2021(9): 32-36,48. DOI: 10.13474/j.cnki.11-2246.2021.0269
    [16]
    丁尤蓉, 王敬东, 邱玉娇, 等. 基于自适应阈值的FAST特征点提取算法[J]. 指挥控制与仿真, 2013, 35(2): 47-53.
    [17]
    张猛, 唐清岭, 蒋小菲. 基于自适应的AGAST特征均匀化提取算法[J]. 智能计算机与应用, 2023, 13(8): 66-72.
    [18]
    BURRI M, NIKOLIC J, GOHL P, et al. The EuRoC micro aerial vehicle datasets[J]. Journal of robotics research, 2016, 35(10): 1157-1163. DOI: 10.1177/0278364915620033
    [19]
    NIU X J, TANG H L, ZHANG T S, et al. IC-GVINS: A robust, real-time, INS-CentricGNSS-visual-inertial navigation system[J]. IEEE robotics and automation letters, 2023, 8(1): 216-223. DOI: 10.1109/LRA.2022.3224367
  • Cited by

    Periodical cited type(5)

    1. 孙晓军,姚崇,宋恩哲,龙云,刘晓阳,白慧泉. 船舶混合动力系统与智能能量管理控制策略研究进展(英文). 推进技术. 2022(07): 24-46 .
    2. 曹宇,方会凌,赵永旗,崔海朋. 基于BDS的可燃冰开采环境监测与评估系统设计. 全球定位系统. 2021(01): 112-118 . 本站查看
    3. 吴子岳,李二杨,王儒. 北斗卫星导航系统在近海无人水下航行器路径跟踪方面的应用. 全球定位系统. 2021(02): 98-103 . 本站查看
    4. 曹宇,唐小波,宋育泽,王宁,鲁洪江. 北斗卫星导航系统在一体化智能安全头盔中的应用. 全球定位系统. 2021(03): 111-115 . 本站查看
    5. 高键,张刚. 基于滑模控制的混合动力船舶控制策略. 舰船科学技术. 2021(21): 114-118 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (289) PDF downloads (34) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return