GNSS World of China

Volume 49 Issue 4
Aug.  2024
Turn off MathJax
Article Contents
CHENG Yuyang, PENG Xinzhi, FENG Fan, XU Yiyu, YUAN Xuelin, ZHU Xiangwei. Consistency deception detection technique for GNSS/INS based on open-closed-loop alternation[J]. GNSS World of China, 2024, 49(4): 48-55, 65. doi: 10.12265/j.gnss.2024020
Citation: CHENG Yuyang, PENG Xinzhi, FENG Fan, XU Yiyu, YUAN Xuelin, ZHU Xiangwei. Consistency deception detection technique for GNSS/INS based on open-closed-loop alternation[J]. GNSS World of China, 2024, 49(4): 48-55, 65. doi: 10.12265/j.gnss.2024020

Consistency deception detection technique for GNSS/INS based on open-closed-loop alternation

doi: 10.12265/j.gnss.2024020
  • Received Date: 2024-01-30
    Available Online: 2024-07-08
  • The Global Navigation Satellite System (GNSS) and inertial navigation system (INS) are widely used in fields such as vehicles and drones. However, GNSS receivers are susceptible to deceptive signals. Therefore, this paper proposes a consistency deception detection technique using INS observations. Inertial devices have the characteristics of being less susceptible to deceptive signal interference and prone to cumulative errors. By alternately feeding back estimated errors in an open-closed loop manner, a GNSS/INS integrated navigation system is constructed. During the open-loop period, a deception detection window is established, and the consistency between the statistical detection measurements of the inertial device, acceleration, and angular velocity obtained from GNSS is evaluated to determine the presence of deception. Experimental results demonstrate that with a window time of 70 s, the detection probability reaches 99.2% while the false alarm probability is 5.2%.

     

  • loading
  • [1]
    BOGUSPAYEV N, AKHMEDOV D, RASKALIYEV A, et al. A comprehensive review of GNSS/INS integration techniques for land and air vehicle applications[J]. Applied sciences, 2023, 13(8): 4819. DOI: 10.3390/app13084819
    [2]
    GAO Y J, LV Z W, ZHANG L D. Two-step trajectory spoofing algorithm for loosely coupled GNSS/IMU and NIS sequence detection[J]. IEEE access, 2019(7): 96359-96371. DOI: 10.1109/ACCESS.2019.2927539
    [3]
    CHEN C, CHANG G. Low-cost GNSS/INS integration for enhanced land vehicle performance[J]. Measurement science and technology, 2019, 31(3): 035009. DOI: 10.1088/1361-6501/ab52cb
    [4]
    GROVES P. Principles of GNSS, inertial, and multi-sensor integrated navigation systems[M]. Engineering, Computer Science, Physics, 2007.
    [5]
    FALCO G, PINI M, MARUCCO G. Loose and tight GNSS/INS integrations: comparison of performance assessed in real urban scenarios[J]. Sensors, 2017, 17(2): 255. DOI: 10.3390/s17020255
    [6]
    李松, 唐小妹, 孙鹏跃, 等. GNSS/INS紧组合最大熵卡尔曼滤波算法[J]. 全球定位系统, 2020, 45(4): 1-8.
    [7]
    HE Y, LI J C, LIU J J. Research on GNSS INS & GNSS/INS integrated navigation method for autonomous vehicles: a survey[J]. IEEE access, 2023(11): 79033-79055. DOI: 10.1109/ACCESS.2023.3299290
    [8]
    WU Y, CHEN S, YIN T. GNSS/INS tightly coupled navigation with robust adaptive extended Kalman filter[J]. International journal of automotive technology, 2022, 23(6): 1639-1649. DOI: 10.1007/s12239-022-0142-7
    [9]
    倪少杰, 李诗扬, 谢郁辰, 等. GNSS/INS超紧组合导航综述[J]. 国防科技大学学报, 2023, 45(5): 48-59. DOI: 10.11887/j.cn.202305006
    [10]
    CURRAN J T, BROUMENDAN A. On the use of low-cost IMUs for GNSS spoofing detection in vehicular applications[C]//Proceedings of International Technical Symposium on Navigation and Timing, 2017: 1-8.
    [11]
    BROUMANDAN A, LACHAPELLE G. Spoofing detection using GNSS/INS/Odometer coupling for vehicular navigation[J]. Sensors, 2018, 18(5): 1305. DOI: 10.3390/s18051305
    [12]
    CECCATO M, FORMAGGIO F, LAURENTI N, et al. Generalized likelihood ratio test for GNSS spoofing detection in devices with IMU[J]. IEEE transactions on information forensics and security, 2021(16): 3496-3509. DOI: 10.1109/TIFS.2021.3083414
    [13]
    LO S, CHEN Y H, REID T, et al. Keynote: The benefits of low cost accelerometers for GNSS anti-spoofing[C]//Proceedings of the ION 2017 Pacific PNT Meeting. 2017: 775-796.https://doi.org/10.33012/2017.15109
    [14]
    DONG Y, WANG D, ZHANG L, et al. Tightly coupled GNSS/INS integration with robust sequential Kalman filter for accurate vehicular navigation[J]. Sensors, 2020, 20(2): 561. DOI: 10.3390/s20020561
    [15]
    刘东亮, 成芳, 沈朋礼, 等. LSTM辅助车载GNSS/INS组合导航算法及性能分析[J]. 全球定位系统, 2023, 48(5): 21-31. DOI: 10.12265/j.gnss.2023111
    [16]
    LIU Y, LI S H, FU Q W, et al. Impact assessment of GNSS spoofing attacks on INS/GNSS integrated navigation system[J]. Sensors, 2018, 18(5): 1433. DOI: 10.3390/s18051433
    [17]
    XU R, DING M Y, QI Y, et al. Performance analysis of GNSS/INS loosely coupled integration systems under spoofing attacks[J]. Sensors, 2018, 18(12): 4108. DOI: 10.3390/s18124108
    [18]
    吴晓倩, 卢秀山, 王胜利, 等. 一种基于改进自适应卡尔曼滤波的GNSS/INS组合导航算法[J]. 科学技术与工程, 2020, 20(3): 913-917. DOI: 10.3969/j.issn.1671-1815.2020.03.007
    [19]
    JIANG H T, LI T, SONG D, et al. An effective integrity monitoring scheme for GNSS/INS/vision integration based on error state EKF model[J]. IEEE sensors journal, 2022, 22(7): 7063-7073. DOI: 10.1109/JSEN.2022.3154054
    [20]
    LI S, MIKHAYLOV M, PANY T, et al. Exploring the potential of deep learning aided Kalman filter for GNSS/INS integration: a study on 2D simulation datasets[J]. IEEE transactions on aerospace and electronic systems, 2023: 1-10. DOI: 10.1109/TAES.2023.3325791
    [21]
    WU F, LUO H Y, JIA H W, et al. Predicting the noise covariance with a multitask learning model for Kalman filter-based GNSS/INS integrated navigation[J]. IEEE transactions on instrumentation and measurement, 2020(70): 1-13. DOI: 10.1109/TIM.2020.3024357
    [22]
    UENEY M, CLARK D E, JULIER S J. Distributed fusion of PHD filters via exponential mixture densities[J]. IEEE journal of selected topics in signal processing, 2013, 7(3): 521-531. DOI: 10.1109/JSTSP.2013.2257162
    [23]
    YIN Z H, YANG J H, MA Y, et al. A robust adaptive extended Kalman filter based on an improved measurement noise covariance matrix for the monitoring and isolation of abnormal disturbances in GNSS/INS vehicle navigation[J]. Remote sensing, 2023, 15(17): 4125. DOI: 10.3390/rs15174125
    [24]
    MOUSSA M, MOUSSA A, ELHABIBY M, et al. Wheel-based aiding of low-cost imu for land vehicle navigation in GNSS challenging environment[C]//IEEE 92nd Vehicular Technology Conference (VTC2020-Fall), 2020: 1-6.
    [25]
    CHEN Q J, ZHANG Q, NIU X J. Estimate the pitch and heading mounting angles of the IMU for land vehicular GNSS/INS integrated system[J]. IEEE transactions on intelligent transportation systems, 2021, 22(10): 6503-6515. DOI: 10.1109/TITS.2020.2993052
    [26]
    ZHAO Y W. Cubature+extended hybrid Kalman filtering method and its application in PPP/IMU tightly coupled navigation systems[J]. IEEE sensors journal, 2015, 15(12): 6973-6985. DOI: 10.1109/JSEN.2015.2469105
    [27]
    谢钢. GPS原理与接收机设计[M]. 北京: 电子工业出版社, 2017.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (102) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return