GNSS World of China

Volume 49 Issue 3
Jun.  2024
Turn off MathJax
Article Contents
ZHENG Canguang, ZHENG Hui, XIE Shicheng, ZHU Mingfei, HAN Yuchen, YANG Xu. GNSS vertical time series denoising method for mining area subsidence monitoring[J]. GNSS World of China, 2024, 49(3): 28-37. doi: 10.12265/j.gnss.2024002
Citation: ZHENG Canguang, ZHENG Hui, XIE Shicheng, ZHU Mingfei, HAN Yuchen, YANG Xu. GNSS vertical time series denoising method for mining area subsidence monitoring[J]. GNSS World of China, 2024, 49(3): 28-37. doi: 10.12265/j.gnss.2024002

GNSS vertical time series denoising method for mining area subsidence monitoring

doi: 10.12265/j.gnss.2024002
  • Received Date: 2024-01-03
    Available Online: 2024-05-14
  • The GNSS technology, as an important tool for mining subsidence monitoring, is significantly affected by the noise present in its time series. This paper proposes a denoising method that combines an Improved hybrid grey wolf particle swarm optimization (IPSOGWO) and an improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), coupled with wavelet thresholding (WT). The IPSOGWO optimizes the hyperparameters of the ICEEMDAN algorithm to decompose the GNSS time series and extract the intrinsic mode functions (IMF). The multi-scale permutation entropy is used to select the IMF components containing noise. These components are then secondarily processed using wavelet thresholding and reconstructed with the remaining IMF components to obtain the denoised results. Experiments with simulated signals and actual data from an automated monitoring station in a mining area demonstrate that the proposed method outperforms the wavelet threshold, complete ensemble empirical mode decomposition (CEEMD), and GWO-ICEEMDAN in terms of denoising performance, providing reliable data for subsequent analysis of working face subsidence.

     

  • loading
  • [1]
    陶国强. 基于奇异谱分析的GNSS坐标时间序列粗差探测与噪声估计[J]. 大地测量与地球动力学, 2021, 41(12): 1223-1229.
    [2]
    ZHUANG W Q, LI J, HAO M, et al. Analyze the characteristics of crustal activity in the southern Sichuan-Yunnan using GNSS data and focal mechanism solution[J]. Journal of geodesy and geodynamics, 2021, 41(7): 732-738,746.
    [3]
    曲轩宇, 李新瑞, 郑蕾, 等. 联合交叉验证和CEEMD-WT的GNSS时间序列降噪方法[J/OL]. 武汉大学学报(信息科学版). (2023-06-04)[2023-06-28]. https://doi.org/10.13203/j.whugis20220570
    [4]
    范小猛, 胡川, 张重阳, 等. 三种GNSS高程时序降噪方法的效果对比分析[J]. 全球定位系统, 2022, 47(1): 68-73.
    [5]
    戴海亮, 孙付平, 姜卫平, 等. 小波多尺度分解和奇异谱分析在GNSS站坐标时间序列分析中的应用[J]. 武汉大学学报(信息科学版), 2021, 46(3): 371-380.
    [6]
    YEH J R. SHIEH J S, HUANG N E. Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method[J]. Advances in adaptive data analysis, 2010, 2(2): 135-156. DOI: 10.1142/S1793536910000422
    [7]
    刘希康, 丁志峰, 李媛, 等. EMD在GNSS时间序列周期项处理中的应用[J]. 武汉大学学报(信息科学版), 2023, 48(1): 135-145.
    [8]
    鲁铁定, 钱文龙, 贺小星, 等. 一种确定分界IMF分量的改进EMD方法[J]. 大地测量与地球动力学, 2020, 40(7): 720-725.
    [9]
    陈祥, 杨志强, 田镇, 等. GA-VMD与多尺度排列熵结合的GNSS坐标时序降噪方法[J]. 武汉大学学报(信息科学版), 2023, 48(9): 1425-1434.
    [10]
    嵇昆浦, 沈云中. 含缺值GNSS基准站坐标序列的非插值小波分析与信号提取[J]. 测绘学报, 2020, 49(5): 537-546.
    [11]
    邱小梦, 陶国强, 王奉伟, 等. LMD和小波阈值的GNSS坐标时间序列降噪应用[J]. 测绘科学, 2021, 46(8): 28-32,48.
    [12]
    马俊, 曹成度, 姜卫平, 等. 利用小波包系数信息熵去除GNSS站坐标时间序列有色噪声[J]. 武汉大学学报(信息科学版), 2021, 46(9): 1309-1317.
    [13]
    CIVERA M, SURACE C. A comparative analysis of signal decomposition techniques for structural health monitoring on an experimental benchmark[J]. Sensors, 2021, 21(5): 1825. DOI: 10.3390/s21051825
    [14]
    ZHANG B Y, WANG P, LIU G Y, et al. Diagnosis of single and multiple-source faults of chiller sensors using EWEEMD-ICKNN by time sequence denoising and non-Gaussian distribution feature extraction[J]. Energy and buildings, 2023(298): 113572. DOI: 10.1016/j.enbuild.2023.113572
    [15]
    WU Z H, HUANG N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in adaptive data analysis, 2009, 1(1): 1-41. DOI: 10.1142/S1793536909000047
    [16]
    TORRES M E, COLOMINAS M A, SCHLOTTHAUER G, et al. A complete ensemble empirical mode decomposition with adaptive noise[C]//IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011: 4144-4147. DOI: 10.1109/ICASSP.2011.5947265
    [17]
    COLOMINAS M A, SCHLOTTHAUER G, TORRES M E. Improved complete ensemble EMD: a suitable tool for biomedical signal processing[J]. Biomedical signal processing and control, 2014, 14(11): 19-29. DOI: 10.1016/j.bspc.2014.06.009
    [18]
    REN C F, XU J, XU J, et al. Coal–Rock cutting sound denoising based on complete ensemble empirical mode decomposition with adaptive noise and an improved fruit fly optimization algorithm[J]. Machines, 2022, 10(6): 412. DOI: 10.3390/machines10060412
    [19]
    陈爱午, 王红卫. 基于HBA-ICEEMDAN和HWPE的行星齿轮箱故障诊断[J]. 机电工程, 2023, 40(8): 1157-1166.
    [20]
    赵桠松, 许辉群, 王泽峰, 等. 基于ICEEMDAN的曲波阈值地震数据去噪方法研究[J]. 工程地球物理学报, 2022, 19(2): 252-257.
    [21]
    周东红, 周建科, 夏同星, 等. 三参数小波变换自适应阈值压制地震数据高频随机噪声[J]. 地球物理学报, 2023, 66(5): 2095-2111.
    [22]
    于航, 王直, 董勃, 等. 基于改进小波阈值法的MEMS陀螺仪信号降噪研究[J]. 计算机与数字工程, 2022, 50(8): 1844-1847.
    [23]
    HALIDOU A, MOHAMADOU Y, ARI A A A, et al. Review of wavelet denoising algorithms[J]. Multimedia tools and applications, 2023(82): 41539-41569. DOI: 10.1007/s11042-023-15127-0
    [24]
    LI, H, LI S S, SUN J, et al. Ultrasound signal processing based on joint GWO-VMD wavelet threshold functions[J]. Measurement, 2024(226): 114143. DOI: 10.1016/j.measurement.2024.114143
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (191) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return