GNSS World of China
Citation: | WANG Xuke, CHEN Liangzhou, YAO Wei. Analysis of anomalous environmental responses to the 5.5 earthquake in Pingyuan County, Dezhou in august 2023 based on GNSS[J]. GNSS World of China, 2024, 49(2): 76-81. doi: 10.12265/j.gnss.2023219 |
[1] |
杨剑, 张宇, 胡良晨, 等. 2017年九寨沟M7.0地震前临震电离层异常研究[J]. 地震, 2022, 42(4): 100-110.
|
[2] |
蔡华, 李子申, 王敏, 等. 汶川Mw7.9与日本Mw9.0地震同震电离层扰动研究[J]. 武汉大学学报(信息科学版), 2013, 38(6): 716-719,724.
|
[3] |
张怀, 聂兆生, 刘刚, 等. 高频BDS/GPS融合PPP确定2021年玛多M_W7.4地震三要素[J]. 地震研究, 2023, 46(2): 216-225.
|
[4] |
BESHR A, ZARZOURA F. Using artificial neural networks for GNSS observations analysis and displacement prediction of suspension highway bridge[J]. Innovative infrastructure solutions, 2021, 6(1): 1-15. DOI: 10.1007/s41062-021-00458-4
|
[5] |
TU R, ZHANG R, ZHANG P, et al. Integration of single-frequency GNSS and strong-motion observations for real-time earthquake monitoring[J]. Remote sensing, 2018, 10(6): 886. DOI: 10.3390/rs10060886
|
[6] |
WANG J, JIANG W, LI Z, et al. A new multi-scale sliding window LSTM framework (MSSW-LSTM): a case study for GNSS time-series prediction[J]. Remote sensing, 2021, 13(16): 3328. DOI: 10.3390/rs13163328
|
[7] |
马玉, 祝芙英. 基于GPS TEC的尼泊尔M_W7.8地震同震电离层扰动研究[J]. 大地测量与地球动力学, 2020, 40(9): 957-961,969.
|
[8] |
GAO Z, LI Y, SHAN X, et al. Earthquake magnitude estimation from high-rate GNSS data: a case study of the 2021 Mw 7.3 Maduo earthquake[J]. Remote sensing, 2021, 13(21): 4478. DOI: 10.3390/rs13214478
|
[9] |
姚宜斌, 翟长治, 孔建, 等. 2015年尼泊尔地震的震前电离层异常探测[J]. 测绘学报, 2016, 45(4): 385-395.
|
[10] |
姜卫平, 许才军, 李志伟, 等. 利用空间观测技术研究青海玛多7.4级地震孕育发生变形时空特征[J]. 地球物理学报, 2022, 65(2): 495-508.
|
[11] |
张一彬, 钟慧鑫, 张亭, 等. 2019-05-26秘鲁北部地震前低纬电离层变化分析[J]. 大地测量与地球动力学, 2023, 43(2): 135-140.
|
[12] |
翟笃林, 祝芙英, 林剑, 等. 基于地基GPS-TEC的中国区域地震电离层效应研究[J]. 中国地震, 2020, 36(4): 857-871.
|
[13] |
唐龙, 郭博峰, 李哲. 利用日本GPS网探测2011年Tohoku海啸引发的电离层扰动[J]. 地球物理学报, 2017, 60(2): 507-513.
|
[14] |
LARSON K, LAY T, YAMAZAKI Y, et al. Dynamic sea level variation from GNSS: 2020 Shumagin earthquake tsunami resonance and hurricane Laura[J]. Geophysical research letters, 2021, 48(4): e2020GL091378. DOI: 10.1029/2020GL091378
|
[15] |
XU P L, DU F, SHU Y M, et al. Regularized reconstruction of peak ground velocity and acceleration from very high-rate GNSS precise point positioning with applications to the 2013 Lushan Mw6.6 earthquake[J]. Journal of geodesy, 2021, 95(1): 1-22. DOI: 10.1007/s00190-020-01449-6
|
[16] |
SUN Y. GNSS brings us back on the ground from ionosphere[J]. Geoscience letters, 2019, 6(1): 1-9. DOI: 10.1186/s40562-019-0144-0
|
[17] |
KING L S, UNWIN M, RAWLINSON J, et al. Towards a topographically-accurate reflection point prediction algorithm for operational spaceborne GNSS reflectometry-development and verification[J]. Remote sensing, 2021, 13(5): 1031. DOI: 10.3390/rs13051031
|
[18] |
EH N. Elementary statistical methods[J]. Nature, 1934, 133(3349): 9. DOI: 10.1038/133009c0
|