GNSS World of China

Volume 49 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
WANG Xuke, CHEN Liangzhou, YAO Wei. Analysis of anomalous environmental responses to the 5.5 earthquake in Pingyuan County, Dezhou in august 2023 based on GNSS[J]. GNSS World of China, 2024, 49(2): 76-81. doi: 10.12265/j.gnss.2023219
Citation: WANG Xuke, CHEN Liangzhou, YAO Wei. Analysis of anomalous environmental responses to the 5.5 earthquake in Pingyuan County, Dezhou in august 2023 based on GNSS[J]. GNSS World of China, 2024, 49(2): 76-81. doi: 10.12265/j.gnss.2023219

Analysis of anomalous environmental responses to the 5.5 earthquake in Pingyuan County, Dezhou in august 2023 based on GNSS

doi: 10.12265/j.gnss.2023219
  • Received Date: 2023-12-01
  • Accepted Date: 2023-12-01
  • Available Online: 2024-03-22
  • To investigate the abnormal environmental response caused by the magnitude 5.5 earthquake in Pingyuan County, Shandong Province, on August 6th, 2023, this study based on the Global Navigation Satellite System (GNSS) observation data located about 26 km northeast of the epicenter, proposes a moving time-varying frequency method and incorporates the interquartile range (IQR) method to analyze the abnormal environmental responses triggered by the earthquake. The results indicate significant anomalies in the N and E directional coordinate velocity time series at 9 to 10 seconds after the earthquake, with a minor anomaly in the U direction at 16 seconds. Moreover, the sliding time-varying frequency method detects noticeable changes 5 to 10 seconds before the abnormal jump in the velocity time series, demonstrating higher sensitivity. The study also discovered abnormal disturbances in the ionosphere above the epicenter the day before the earthquake, with the anomaly reaching 4 TECU. This research demonstrates the effectiveness of GNSS technology in detecting abnormal environmental responses during earthquakes, offering a new perspective and tools for earthquake monitoring and early warning.

     

  • loading
  • [1]
    杨剑, 张宇, 胡良晨, 等. 2017年九寨沟M7.0地震前临震电离层异常研究[J]. 地震, 2022, 42(4): 100-110.
    [2]
    蔡华, 李子申, 王敏, 等. 汶川Mw7.9与日本Mw9.0地震同震电离层扰动研究[J]. 武汉大学学报(信息科学版), 2013, 38(6): 716-719,724.
    [3]
    张怀, 聂兆生, 刘刚, 等. 高频BDS/GPS融合PPP确定2021年玛多M_W7.4地震三要素[J]. 地震研究, 2023, 46(2): 216-225.
    [4]
    BESHR A, ZARZOURA F. Using artificial neural networks for GNSS observations analysis and displacement prediction of suspension highway bridge[J]. Innovative infrastructure solutions, 2021, 6(1): 1-15. DOI: 10.1007/s41062-021-00458-4
    [5]
    TU R, ZHANG R, ZHANG P, et al. Integration of single-frequency GNSS and strong-motion observations for real-time earthquake monitoring[J]. Remote sensing, 2018, 10(6): 886. DOI: 10.3390/rs10060886
    [6]
    WANG J, JIANG W, LI Z, et al. A new multi-scale sliding window LSTM framework (MSSW-LSTM): a case study for GNSS time-series prediction[J]. Remote sensing, 2021, 13(16): 3328. DOI: 10.3390/rs13163328
    [7]
    马玉, 祝芙英. 基于GPS TEC的尼泊尔M_W7.8地震同震电离层扰动研究[J]. 大地测量与地球动力学, 2020, 40(9): 957-961,969.
    [8]
    GAO Z, LI Y, SHAN X, et al. Earthquake magnitude estimation from high-rate GNSS data: a case study of the 2021 Mw 7.3 Maduo earthquake[J]. Remote sensing, 2021, 13(21): 4478. DOI: 10.3390/rs13214478
    [9]
    姚宜斌, 翟长治, 孔建, 等. 2015年尼泊尔地震的震前电离层异常探测[J]. 测绘学报, 2016, 45(4): 385-395.
    [10]
    姜卫平, 许才军, 李志伟, 等. 利用空间观测技术研究青海玛多7.4级地震孕育发生变形时空特征[J]. 地球物理学报, 2022, 65(2): 495-508.
    [11]
    张一彬, 钟慧鑫, 张亭, 等. 2019-05-26秘鲁北部地震前低纬电离层变化分析[J]. 大地测量与地球动力学, 2023, 43(2): 135-140.
    [12]
    翟笃林, 祝芙英, 林剑, 等. 基于地基GPS-TEC的中国区域地震电离层效应研究[J]. 中国地震, 2020, 36(4): 857-871.
    [13]
    唐龙, 郭博峰, 李哲. 利用日本GPS网探测2011年Tohoku海啸引发的电离层扰动[J]. 地球物理学报, 2017, 60(2): 507-513.
    [14]
    LARSON K, LAY T, YAMAZAKI Y, et al. Dynamic sea level variation from GNSS: 2020 Shumagin earthquake tsunami resonance and hurricane Laura[J]. Geophysical research letters, 2021, 48(4): e2020GL091378. DOI: 10.1029/2020GL091378
    [15]
    XU P L, DU F, SHU Y M, et al. Regularized reconstruction of peak ground velocity and acceleration from very high-rate GNSS precise point positioning with applications to the 2013 Lushan Mw6.6 earthquake[J]. Journal of geodesy, 2021, 95(1): 1-22. DOI: 10.1007/s00190-020-01449-6
    [16]
    SUN Y. GNSS brings us back on the ground from ionosphere[J]. Geoscience letters, 2019, 6(1): 1-9. DOI: 10.1186/s40562-019-0144-0
    [17]
    KING L S, UNWIN M, RAWLINSON J, et al. Towards a topographically-accurate reflection point prediction algorithm for operational spaceborne GNSS reflectometry-development and verification[J]. Remote sensing, 2021, 13(5): 1031. DOI: 10.3390/rs13051031
    [18]
    EH N. Elementary statistical methods[J]. Nature, 1934, 133(3349): 9. DOI: 10.1038/133009c0
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (190) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return