GNSS World of China

Volume 49 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
LIU Xiaowen. Analysis and prediction of BDS-3 satellite differential code bias based on LSTM[J]. GNSS World of China, 2024, 49(1): 102-107. doi: 10.12265/j.gnss.2023216
Citation: LIU Xiaowen. Analysis and prediction of BDS-3 satellite differential code bias based on LSTM[J]. GNSS World of China, 2024, 49(1): 102-107. doi: 10.12265/j.gnss.2023216

Analysis and prediction of BDS-3 satellite differential code bias based on LSTM

doi: 10.12265/j.gnss.2023216
  • Received Date: 2023-11-22
    Available Online: 2024-02-06
  • When the satellite differential code bias (DCB) constraints and benchmarks change, there will be a relatively large difference in its value,which affects the accuracy of navigation and positioning. This paper analyzes the time series changes of the BDS-3 satellite DCB in 2021, synthesizes the solar radiation flux and the geomagnetic index,and uses the LSTM neural network to predict and analyze the accuracy of the satellite DCB. The experimental results show that the prediction effect of the LSTM neural network model is better than that of the polynomial fitting method. The mean absolute deviation (MAE) and root mean squared error (RMSE) are less than 0.2 ns and 0.5 ns respectively. The errors of the forecast results for many days in the future are all less than 0.2 ns. LSTM neural network can effectively predict satellite DCB and provide reference for missing DCB products.

     

  • loading
  • [1]
    邓远帆, 郭斐, 张小红, 等. 北斗三号卫星多频多通道差分码偏差估计与分析[J]. 测绘学报, 2021, 50(4): 448-456.
    [2]
    姚文豪. 北斗三号卫星多频差分码偏差估计与电离层预报[D]. 徐州: 中国矿业大学, 2022.
    [3]
    LI M, YUAN Y B. Estimation and analysis of BDS2 and BDS3 differential code biases and global ionospheric maps using BDS observations[J]. Remote sensing. 2021, 13(3): 370. DOI: 10.3390/rs13030370
    [4]
    WANG Q S, JIN S G, HU Y J. Epoch-by-epoch estimation and analysis of BeiDou Navigation Satellite System (BDS) receiver differential code biases with the additional BDS-3 observations[J]. Annales geophysicae, 2020, 38(5): 1115-1122. DOI: 10.5194/angeo-38-1115-2020
    [5]
    汪奇生. 多模多频GNSS差分码偏差估计及电离层建模研究[J]. 测绘学报, 2023, 52(6): 1040.
    [6]
    梅登奎, 闻德保. BDS卫星差分码偏差稳定性分析及其短期预报[J]. 大地测量与地球动力学, 2020, 40(7): 746-750.
    [7]
    周中华, 万祥, 程艳, 等. 一种地基GNSS接收机差分码偏差估算方法[J]. 空间科学学报, 2022, 42(1): 170-178.
    [8]
    刘冰雨. 北斗差分码偏差估计及电离层TEC建模分析[D]. 徐州: 中国矿业大学, 2023.
    [9]
    张金, 王潜心, 胡超, 等. 基于多路径修正的BDS-3差分码偏差估计[J]. 大地测量与地球动力学, 2023, 43(10): 1008-1014.
    [10]
    李阳, 王宁波, 李子申, 等. 顾及卫星PCO改正的BDS-3卫星差分码偏差精确估计[J]. 测绘学报, 2023, 52(9): 1460-1468.
    [11]
    刘冰雨, 王中元, 胡超, 等. BDS卫星短时差分码偏差估计与分析[J]. 合肥工业大学学报(自然科学版), 2022, 45(7): 959-966.
    [12]
    汤俊, 李垠健, 钟正宇, 等. EOF-LSTM神经网络的电离层TEC预报模型[J]. 大地测量与地球动力学, 2021, 41(9): 911-915.
    [13]
    王勇, 王泓易, 刘严萍, 等. 融合GNSS水汽、风速与大气污染物的河北省冬季PM_(2.5)浓度预测研究[J]. 大地测量与地球动力学, 2020, 40(11): 1145-1152.
    [14]
    陈晓阳. LSTM卫星钟差预报模型建立与预报方法研究[D]. 济南: 山东科技大学, 2020.
    [15]
    王建敏, 徐迟, 祁向前, 等. 一种组合模型的电离层总电子含量预报方法[J]. 导航定位学报, 2023, 11(2): 166-175.
    [16]
    曾凡涛. 基于深度学习的电离层电子总含量的时序预测研究[D]. 南昌: 南昌大学, 2020.
    [17]
    夏吉业, 张海勇, 徐池, 等. 基于CNN-BiLSTM的短波通信频率预测研究[J]. 通信技术, 2020, 53(6): 1311-1318.
    [18]
    郑敦勇. 基于GNSS的区域电离层模型研究[D]. 南京: 东南大学, 2017.
    [19]
    袁运斌. 基于GPS的电离层监测及延迟改正理论与方法的研究[D]. 武汉: 中国科学院研究生院(测量与地球物理研究所), 2000.
    [20]
    任晓东. 多系统GNSS电离层TEC高精度建模及差分码偏差精确估计[D]. 武汉: 武汉大学, 2017.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (224) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return