GNSS World of China
Citation: | ZHANG Pengjie, PANG Zhiguo, LU Jingxuan, JIANG Wei, LYU Juan, SUN Minghan. Research progress of GNSS-R water level monitoring and its application prospect in China’s water conservancy industry[J]. GNSS World of China, 2024, 49(1): 34-44. doi: 10.12265/j.gnss.2023180 |
[1] |
ZARNIK M S, BELAVIC D. Study of LTCC-based pressure sensors in water[J]. Sensors and actuators, a physical, 2014, 220: 45-52. DOI: 10.1016/j.sna.2014.09.009
|
[2] |
POPA G N, POPA I, DINIŞ C M, et al. Resistive stepped transducer used for water level measurement[C]//Proceedings of the 1st WSEAS International Conference on Sensors and Signals, 2008: 66-71.
|
[3] |
CHETPATTANANONDH K, TAPOANOI T, PHUKPATTARANONT P, et al. A self-calibration water level measurement using an interdigital capacitive sensor[J]. Sensors and actuators, a physical, 2014, 209(5): 175-182. DOI: 10.1016/j.sna.2014.01.040
|
[4] |
许笠, 王延乐, 华小军. 雷达水位计在水情监测系统中的应用研究[J]. 人民长江, 2014, 45(2): 74-77.
|
[5] |
TERZIC J, NAGARAJAH C R, ALAMGIR M. Fluid level measurement in dynamic environments using a single ultrasonic sensor and support vector machine (SVM)[J]. Sensors and actuators, a physical, 2010, 161(1-2): 278-287. DOI: 10.1016/j.sna.2010.05.005
|
[6] |
TABIBI S, FRANCIS O. Can GNSS-R detect abrupt water level changes[J]. Remote sensing, 2020, 12(21): 3614. DOI: 10.3390/rs12213614
|
[7] |
朱德军, 李浩博, 王晓明. GNSS遥感技术在智慧水利建设中的应用展望[J] 水利水电技术(中英文), 2022, 53(10): 33-57.
朱德军, 李浩博, 王晓明. GNSS遥感技术在智慧水利建设中的应用展望[J] 水利水电技术(中英文), 2022, 53(10): 33-57.
|
[8] |
YU K, RIZOS C, BURRAGE D, et al. An overview of GNSS remote sensing[J]. EURASIP journal on advances in signal processing, 2014: 134. DOI: 10.1186/1687-6180-2014-134
|
[9] |
FOTI G, GOMMENGINGER C, JALES P, et al. Spaceborne GNSS reflectometry for ocean winds: first results from the UK TechDemoSat-1 mission[J]. Geophysical research letters, 2015(42): 5435-5441. DOI: 10.1002/2015GL064204
|
[10] |
CLARIZIA M P, RUF C, CIPOLLINI P, et al. First spaceborne observation of sea surface height using GPS-reflectometry[J]. Geophysical research letters, 2016, 43(2): 767-774. DOI: 10.1002/2015GL066624
|
[11] |
CERVELLERA F. GNSS-R as a source of opportunity for remote sensing of the cryosphere[J]. Computer science, geography, 2013. DOI: 10.5821/dissertation-2117-94934
|
[12] |
ZHANG Y, CHEN S S, HONG Z H, et al. Feasibility of oil slick detection using BeiDou-R coastal simulation[J]. Mathematical problems in engineering, 2017, 2017(2): 8098029. DOI: 10.1155/2017/8098029
|
[13] |
YANG Y, ZHENG Y, YU W K, et al. Deformation monitoring using GNSS-R technology[J]. Advances in space research, 2019, 63(10): 3303-3314. DOI: 10.1016/j.asr.2019.01.033
|
[14] |
CHEW C, SHAH R, ZUFFADA C, et al. Demonstrating soil moisture remote sensing with observations from the UK TechDemoSat-1 satellite mission[J]. Geophysical research letters, 2016, 43(7): 3317-3324. DOI: 10.1002/2016gl068189
|
[15] |
ZHENG N, CHEN P, LI Z. Accuracy analysis of ground-based GNSS-R sea level monitoring based on multi GNSS and multi-SNR[J]. Advances in space research, 2021, 68(4): 1789-1801. DOI: 10.1016/j.asr.2021.04.024
|
[16] |
MARTÍN-NEIRA M. A passive reflectometry and interferometry system (PARIS): application to ocean altimetry[J]. ESA journal, 1993, 17(4): 331-355.
|
[17] |
WANG X L, HE X F, ZHANG Q. Evaluation and combination of quad-constellation multi-GNSS multipath reflectometry applied to sea level retrieval[J]. Remote sensing of environment, 2019, 231(2): 111229. DOI: 10.1016/j.rse.2019.111229
|
[18] |
XU L W, WAN W, CHEN X W, et al. Spaceborne GNSS-R observation of global lake level: first results from the TechDemoSat-1 mission[J]. Remote sensing, 2019, 11(12): 1438. DOI: 10.3390/rs11121438
|
[19] |
HA M C. Evolution of soil moisture and analysis of fluvial altimetry using GNSS-R[D]. University of Engineering and Technology, 2018.
|
[20] |
SONG M F, HE X F, WANG X L, et al. Study on the quality control for periodogram in the determination of water level using the GNSS-IR technique[J]. Sensors (Basel, Switzerland), 2019, 19(20): 4524. DOI: 10.3390/s19204524
|
[21] |
万玮, 李黄, 洪阳, 等. GNSS-R 遥感观测模式及陆面应用[J]. 遥感学报, 2015, 19(6): 882-893.
|
[22] |
ZAVOROTNY V, GLEASON S, CARDELLACH E, et al. Tutorial on remote sensing using GNSS bistatic radar of opportunity[J]. Geoscience and remote sensing magazine, 2015, 2(4): 8-45. DOI: 10.1109/MGRS.2014.2374220
|
[23] |
贺匀峤. 高精度GNSS-R海面测高基带信号处理研究[D].济南: 山东大学, 2022.
|
[24] |
MARTIN-NEIRA, MANUEL, CAPARRINI, et al. The PARIS concept: an experimental demonstration of sea surface altimetry using GPS reflected signals[J]. IEEE transactions on geoscience and remote sensing, 2001, 39(1): 142-150. DOI: 10.1109/36.898676
|
[25] |
KATZBERG S J, GARRISON J L. Utilizing GPS to determine ionospheric delay over the ocean[J/OL]. (2023-08-23). Nasa TM, 1996: 4750. https://www.cs.odu.edu/~mln/ltrs-pdfs/NASA-96-tm4750.pdf
|
[26] |
CARRENO-LUENGO H, CAMPS A, RAMOS-PEREZ I, et al. Experimental evaluation of GNSS-Reflectometry altimetric precision using the P(Y) and C/A signals[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2014, 7(5): 1493-1500. DOI: 10.1109/jstars.2014.2320298
|
[27] |
GAO F, XU T, WANG N, et al. A shipborne experiment using a dual-antenna reflectometry system for GPS/BDS code delay measurements[J]. Journal of geodesy, 2020, 94(9): 88. DOI: 10.1007/s00190-020-01421-4
|
[28] |
SEMMLING M. Altimetric monitoring of Disko Bay using interferometric GNSS observations on L1 and L2[D]. Deutsches GeoForschungsZentrum GFZ Potsdam, 2012.
|
[29] |
MARTÍN-NEIRA M, D’ADDIO S, BUCK C, et al. The PARIS ocean altimeter in-orbit demonstrator[J]. IEEE Transactions on geoscience and remote sensing, 2011, 49(6): 2209-2237. DOI: 10.1109/TGRS.2010.2092431
|
[30] |
PURNELL D. Progress toward a practical GNSS-R water level sensor[M]. McGill University (Canada), 2022.
|
[31] |
ESTEL C, RIUS A, MARTIN-NEIRAET M, et al. Consolidating the precision of interferometric GNSS-R ocean altimetry using airborne experimental data[J]. IEEE transactions on geoscience and remote sensing, 2014, 52(8): 4992-5004. DOI: 10.1109/TGRS.2013.2286257
|
[32] |
王冬伟, 孙越强, 王先毅, 等. 一种基于北斗三号系统的GNSS-R海面干涉测高技术[J]. 空间科学学报, 2022, 42(3): 492-499.
|
[33] |
王娜子, 鲍李峰, 高凡. 逐历元GNSS-R测高单差和双差算法[J]. 测绘学报, 2016, 45(7): 795-802.
|
[34] |
MARTIN-NEIRA M, COLMENAREJO P, SERRA G R C. Altimetry precision of 1 cm over a pond using the wide-lane carrier phase of GPS reflected signals[J]. Canadian journal of remote sensing, 2002, 28(3): 394-403. DOI: 10.5589/m02-039
|
[35] |
TREUHAFT R N, LOWE S T, ZUFFADA C, et al. 2-cm GPS altimetry over Crater Lake[J]. Geophysical research letters, 2001, 22(1): 4343-4346. DOI: 10.1029/2001GL013815
|
[36] |
LÖFGREN J S, HAAS R. Sea level measurements using multi-frequency GPS and GLONASS observations[J]. EURASIP journal on advances in signal processing, 2014, 2014(1): 50. DOI: 10.1186/1687-6180-2014-50
|
[37] |
HELM A. Ground-based GPS altimetry with the L1 OpenGPS receiver using carrier phase-delay observations of reflected GPS signals[D]. Deutsches GeoForschungsZentrum GFZ Potsdam, 2008.
|
[38] |
LIU W, BECKHEINRICH J, SEMMLING M, et al. Coastal sea-level measurements based on GNSS-R phase altimetry: a case study at the onsala space observatory, sweden[J]. IEEE transactions on geoscience and remote sensing, 2017, 55(10): 5625-5636. DOI: 10.1109/TGRS.2017.2711012
|
[39] |
沈思明. GNSS海面高度测量与误差分析[D]. 上海: 上海海洋大学, 2018.
|
[40] |
FABRA F, CARDELLACH E, RIUS A, et al. Phase altimetry with dual polarization GNSS-R over sea ice[J]. IEEE transactions on geoscience and remote sensing, 2011, 50(6): 2112-2121. DOI: 10.1109/TGRS.2011.2172797
|
[41] |
HE Y Q, GAO F, XU T H, et al. Coastal altimetry using interferometric phase from GEO satellite in Quasi-Zenith satellite system[J]. IEEE geoscience and remote sensing letters, 2022(19). DOI: 10.1109/LGRS.2021.3068376
|
[42] |
KUCWAJ J-C, REBOUL S, STIENNE G. Circular regression applied to GNSS-R phase altimetry[J]. Remote sensing, 2017, 9(7): 651. DOI: 10.3390/rs9070651
|
[43] |
苏晓容, 张云, 韩彦岭, 等. 岸基 GNSS 单天线潮位高度小波分析反演[J]. 导航定位学报, 2019, 7(4): 87-93.
|
[44] |
BILICH A, LARSON K M. Mapping the GPS multipath environment using the signal-to-noise ratio(SNR)[J]. Radio science, 2007, 42(6): 6003. DOI: 10.1029/2007RS003652
|
[45] |
LARSON K M, LOEFGREN J S, HAAS R. Coastal sea level measurements using a single geodetic GPS receiver[J]. Advances in space research, 2013, 51(8): 1301-1310. DOI: 10.1016/j.asr.2012.04.017
|
[46] |
WILLIAMS S D P, BELL P S, MCCANN D L, et al. Demonstrating the potential of low-cost GPS units for the remote measurement of tides and water levels using interferometric reflectometry[J]. Journal of atmospheric and oceanic technology, 2020, 37(10): 1925-1935. DOI: 10.1175/JTECH-D-20-0063.1
|
[47] |
ZHANG S C, LIU K, LIU Q, et al. Tide variation monitoring based improved GNSS-MR by empirical mode decomposition[J]. Advances in space research, 2019, 63(10): 3333-3345. DOI: 10.1016/j.asr.2019.01.046
|
[48] |
STRANDBERG J, HOBIGER T, RÜDIGER HAAS. Improving GNSS-R sea level determination through inverse modeling of SNR data[J]. Radio science, 2016, 51(8): 1286-1296. DOI: 10.1002/2016RS006057
|
[49] |
WANG X L, ZHANG Q, ZHANG S C. Sea level estimation from SNR data of geodetic receivers using wavelet analysis[J]. GPS solutions, 2019, 23(1): 1-14. DOI: 10.1007/s10291-018-0798-7
|
[50] |
WANG X L, HE X F, XIAO R Y, et al. Millimeter to centimeter scale precision water-level monitoring using GNSS reflectometry: application to the south-to-north water diversion project, China[J]. Remote sensing of environment, 2021, 265: 112645. DOI: 10.1016/j.rse.2021.112645
|
[51] |
SEMMLING A M, WICKERT J, SCHO S, et al. A zeppelin experiment to study airborne altimetry using specular Global Navigation Satellite System reflections[J]. Radio science, 2013, 48(4): 427-440. DOI: 10.1002/rds.20049
|
[52] |
STRANDBERG J, HOBIGER T, HAAS R. Real-time sea-level monitoring using Kalman filtering of GNSS-R data[J]. GPS solutions, 2019, 23(3): 1-12. DOI: 10.1007/s10291-019-0851-1
|
[53] |
陈昊晟. 基于多系统GNSS-IR监测长江上游巴东水位变化的研究[D]. 南京: 南京信息工程大学, 2022.
|
[54] |
GAO F, XU T H, WANG N Z, et al. Spatiotemporal evaluation of GNSS-R based on future fully operational Global Multi-GNSS and eight-LEO constellations[J]. Remote sensing, 2018, 10(2): 67. DOI: 10.3390/rs10010067
|
[55] |
CLARIZIA M P, RUF C S. On the spatial resolution of GNSS reflectometry[J]. IEEE geoscience and remote sensing letters, 2016, 13(8): 1064-1068. DOI: 10.1109/LGRS.2016.2565380
|
[56] |
MARTIN, F, CAMPS A, FABRA F et al. Mitigation of direct signal cross-talk and study of the coherent component in GNSS-R[J]. Geoscience and remote sensing letters, 2015, 12(2): 279-283. DOI: 10.1109/LGRS.2014.2335772
|
[57] |
MUNOZ-MARTIN J F, ONRUBIA R, ONRUBIA R, et al. Untangling the incoherent and coherent scattering components in GNSS-R and novel applications[J]. Remote sensing, 2020, 14(7): 1208. DOI: 10.3390/rs12071208
|
[58] |
CAMPS A, MUNOZ-MARTIN J F. Analytical computation of the spatial resolution in GNSS-R and experimental validation at L1 and L5[J]. Remote sensing, 2020, 12(23): 3910. DOI: 10.3390/rs12233910
|
[59] |
CAMPS A. Spatial resolution in GNSS-R under coherent scattering[J]. IEEE geoscience and remote sensing letters, 2019, 17(1): 32-36. DOI: 10.1109/LGRS.2019.2916164
|
[60] |
ROESLER C, LARSON K M. Software tools for GNSS interferometric reflectometry (GNSS-IR)[J]. GPS solutions, 2018, 22(3): 80. DOI: 10.1007/s10291-018-0744-8
|
[61] |
LARSON K M, RAY R D, NIEVINSKI F G, et al. The accidental tide gauge: a GPS reflection case study from kachemak bay, alaska[J]. IEEE geoscience and remote sensing letters, 2013, 10(5): 1200-1204. DOI: 10.1109/LGRS.2012.2236075
|
[62] |
LOEFGREN J S, HAAS R, SCHERNECK H G. Sea level time series and ocean tide analysis from multipath signals at five GPS sites in different parts of the world[J]. Journal of geodynamics, 2014(80): 66-80. DOI: 10.1016/j.jog.2014.02.012
|
[63] |
ROUSSEL N, FRAPPART F, RAMILLIEN G, et al. Simulations of direct and reflected wave trajectories for ground-based GNSS-R experiments[J]. Geoscientific model development, 2014, 7(5): 2261-2279. DOI: 10.5194/gmd-7-2261-2014
|
[64] |
SANTAMARIA-GOMEZ A, WATSON C, GRAVELLE M, et al. Levelling co-located GNSS and tide gauge stations using GNSS reflectometry[J]. Journal of geodesy, 2015, 89(3): 241-258. DOI: 10.1007/s00190-014-0784-y
|
[65] |
SANTAMARÍA-GÓMEZ A, WATSON C. Remote leveling of tide gauges using GNSS reflectometry: case study at spring bay, Australia[J]. GPS solutions, 2017, 21(2): 451-459. DOI: 10.1007/s10291-016-0537-x
|
[66] |
WILLIAMS S D P, NIEVINSKI F G. Tropospheric delays in ground-based GNSS multipath reflectometry-experimental evidence from coastal sites[J]. Journal of geophysical research solid earth, 2017, 122(3): 2310-2327. DOI: 10.1002/2016JB013612
|
[67] |
LUBEIGT C, ORTEGA L, VILÀ-VALLS J, et al. On the impact and mitigation of signal crosstalk in ground-based and low altitude airborne GNSS-R[J]. Remote sensing, 2021, 13(6): 1085. DOI: 10.3390/rs13061085
|
[68] |
ONRUBIA R, PASCUAL D, PARK H, et al. Satellite cross-talk impact analysis in airborne interferometric Global Navigation Satellite System-Reflectometry with the microwave interferometric reflectometer[J]. Remote sensing, 2019, 11(9): 1120. DOI: 10.3390/rs11091120
|
[69] |
PASCUAL D, PARK H, ONRUBIA R, et al. Crosstalk statistics and impact in interferometric GNSS-R[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2016, 9(10): 4621-4630. DOI: 10.1109/JSTARS.2016.2551981
|
[70] |
HE Y Q, XU T H, GAO F, et al. Analysis and mitigation of crosstalk effect on coastal GNSS-R code-level altimetry using L5 signals from QZSS GEO[J]. Remote sensing, 2021, 13(22): 4553. DOI: 10.3390/rs13224553
|
[71] |
WANG Y, MORTON Y J. Coherent GNSS reflection signal processing for high-precision and high-resolution spaceborne applications[J]. IEEE transactions on geoscience and remote sensing, 2020, 59(1): 831-842. DOI: 10.1109/TGRS.2020.2993804
|
[72] |
WANG Q, ZHENG W, WU F, et al. A new GNSS-R altimetry algorithm based on machine learning fusion model and feature optimization to improve the precision of sea surface height retrieval[J]. Frontiers in earth science, 2021(9): 730565. DOI: 10.3389/feart.2021.730565
|