GNSS World of China
Citation: | REN Yuanrui, CHEN Pengdi, GAO Xiaolong. Building extraction based on advanced attention gate U-Net[J]. GNSS World of China, 2024, 49(2): 43-53. doi: 10.12265/j.gnss.2023175 |
[1] |
李锋, 刘旭升, 胡聃, 等. 城市可持续发展评价方法及其应用[J]. 生态学报, 2007, 27(11): 4793-4802.
|
[2] |
ATIK S O, IPBUKER C. Building extraction in VHR remote sensing imagery through deep learning[J]. Fresen environ bull, 2022, 31: 8468-8473.
|
[3] |
SHALONI, DIXIT M, AGARWAL S, et al. Building extraction from remote sensing images: a survey[C]//The 2nd International Conference on Advances in Computing, Communication Control and Networking (ICACCCN), 2020996-971. DOI: 10.1109/ICACCCN51052.2020.9362894
|
[4] |
高妙仙, 吴新辉. 高空间分辨率遥感影像建筑物自动提取方法综述[J]. 测绘与空间地理信息, 2023, 46(3): 32-34.
|
[5] |
李文国, 黄亮, 左小清, 等. 一种结合语义分割模型和图割的街景影像变化检测方法[J]. 全球定位系统, 2021, 46(1): 98-104.
|
[6] |
SHI X, HUANG H, PU C Y, et al. CSA-UNet: channel-spatial attention-based encoder–decoder network for rural blue-roofed building extraction from UAV imagery[J]. IEEE geoscience and remote sensing letters, 2022(19): 1-5. DOI: 10.1109/LGRS.2022.3197319
|
[7] |
张忠豪. 基于深度学习的多场景下建筑物提取研究 [D]. 贵阳: 贵州大学, 2022.
|
[8] |
JÓŹWIK A, SERPICO S, ROLI F. A parallel network of modified 1-NN and k-NN classifiers–application to remote-sensing image classification[J]. Pattern recognition letters, 1998, 19(1): 57-62. DOI: 10.1016/S0167-8655(97)00155-4
|
[9] |
PAL M, MATHER P M. Support vector machines for classification in remote sensing[J]. International journal of remote sensing, 2005, 26(5): 1007-1011. DOI: 10.1080/01431160512331314083
|
[10] |
PAL M. Random forest classifier for remote sensing classification[J]. International journal of remote sensing, 2005, 26(1): 217-222. DOI: 10.1080/01431160412331269698
|
[11] |
XU S J, DENG B W, MENG Y B, et al. ReA-Net: a multiscale region attention network with neighborhood consistency supervision for building extraction from remote sensing image[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2022(15): 9033-9047. DOI: 10.1109/JSTARS.2022.3204576
|
[12] |
WEI S Q, ZHANG T, JI S P, et al. BuildMapper: a fully learnable framework for vectorized building contour extraction[J]. ISPRS journal of photogrammetry and remote sensing, 2023(197): 87-104. DOI: 10.48550/arXiv.2211.03373
|
[13] |
ZHOU Y G, CHEN Z L, WANG B J, et al. BOMSC-Net: boundary optimization and multi-scale context awareness based building extraction from high-resolution remote sensing imagery[J]. IEEE transactions on geoscience and remote sensing, 2022(60): 1-17. DOI: 10.1109/TGRS.2022.3152575
|
[14] |
GUO Y M, LIU Y, GEORGIOU T, et al. A review of semantic segmentation using deep neural networks[J]. International journal of multimedia information retrieval, 2018(7): 87-93. DOI: 10.1007/s13735-017-0141-z
|
[15] |
于坤, 王贺封, 焦月正, 等. 基于语义分割的遥感影像建筑物提取[J]. 测绘与空间地理信息, 2021, 44(10): 50-54.
|
[16] |
LONG J, SHELHAMER E, DARRELL T, et al. Fully convolutional networks for semantic segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015: 3431-3440. DOI: 10.1109/CVPR.2015.7298965
|
[17] |
RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention–MICCAI, 2015: 234-241. DOI: 10.1007/978-3-319-24574-4_28
|
[18] |
BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(12): 2481-2495. DOI: 10.1109/TPAMI.2016.2644615
|
[19] |
CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation [J]. arXiv, 2017: 170605587. DOI: 10.48550/arXiv.1706.05587
|
[20] |
ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6130-6239. DOI: 10.1109/CVPR.2017.660
|
[21] |
ZHENG H H, GONG M G, LIU T F, et al. HFA-Net: High frequency attention siamese network for building change detection in VHR remote sensing images[J]. Pattern recognition, 2022(129): 108717. DOI: 10.1016/j.patcog.2022.108717
|
[22] |
CUI M T, LI K, CHEN J Y, et al. CM-Unet: A novel remote sensing image segmentation method based on improved U-Net[J]. IEEE access, 2023(11): 56994-57005. DOI: 10.1109/ACCESS.2023.3282778
|
[23] |
WANG H Y, MIAO F. Building extraction from remote sensing images using deep residual U-Net[J]. European journal of remote sensing, 2022, 55(1): 71-85. DOI: 10.1080/22797254.2021.2018944
|
[24] |
YAN X, SHEN L, WANG J C, et al. PANet: Pixel-wise affinity network for weakly supervised building extraction from high-resolution remote sensing images[J]. IEEE geoscience and remote sensing letters, 2022(19): 1-5. DOI: 10.1109/LGRS.2022.3205309
|
[25] |
陈雪娇, 田青林, 伊丕源. 基于深度学习的高分辨率遥感影像建筑物提取[J]. 世界核地质科学, 2023, 40(1): 81-88.
|
[26] |
王华俊, 葛小三. 一种轻量级的DeepLabv3+遥感影像建筑物提取方法[J]. 自然资源遥感, 2022, 34(2): 128-135.
|
[27] |
OKTAY O, SCHLEMPER J, FOLGOC L L, et al. Attention u-net: learning where to look for the pancreas[J]. arXiv, 2018. DOI: 10.48550/arXiv.1804.03999
|
[28] |
赵元昊, 赵莹莹, 刘东升, 等. 遥感影像建筑物提取多尺度特征深度学习网络[J]. 航天返回与遥感, 2022, 43(4): 25-35.
|
[29] |
宋佳, 徐慧窈, 高少华, 等. 轻量化卷积神经网络遥感影像建筑物提取模型[J]. 遥感技术与应用, 2023, 38(1): 190-199.
|
[30] |
DU X T, ZHENG Z, XIAO G P, et al. DeepSIM: Deep semantic information-based automatic mandelbug classification[J]. IEEE transactions on reliability, 2021, 71(4): 1540-1554. DOI: 10.1109/TR.2021.3110096
|
[31] |
JI S P, WEI S Q, LU M. Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set[J]. IEEE transactions on geoscience and remote sensing, 2018, 57(1): 574-586. DOI: 10.1109/TGRS.2018.2858817
|
[32] |
YUAN J Y. Learning building extraction in aerial scenes with convolutional networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 40(11): 2793-2798. DOI: 10.1109/TPAMI.2017.2750680
|
[33] |
WAHYUNI I, WANG W-J, LIANG D, et al. Rice Semantic Segmentation Using Unet-VGG16: A Case Study in Yunlin, Taiwan[C]//International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), 2021. DOI: 10.1109/ISPACS51563.2021.9651038
|
[34] |
GHOSH S, CHAKI A, SANTOSH K. Improved U-Net architecture with VGG-16 for brain tumor segmentation[J]. Physical and engineering sciences in medicine, 2021, 44(3): 703-712. DOI: 10.1007/s13246-021-01019-w
|