• 中国科学引文数据库(CSCD)
  • 中文科技期刊数据库
  • 中国核心期刊(遴选)数据库
  • 日本科学技术振兴机构数据库(JST)
  • 中国学术期刊(网络版)(CNKI)
  • 中国学术期刊综合评价数据库(CAJCED)
  • 中国超星期刊域出版平台
GNSS World of China

GNSS World of China

LI Jingtao, ZHANG Shuangcheng, LIU Ning, CHEN Xiongchuan, WANG Jie, FENG Zhijie. Ground-based GNSS is used for multi-parameter inversion of surface environment in frozen soil areas[J]. GNSS World of China, 2023, 48(5): 117-124. DOI: 10.12265/j.gnss.2023162
Citation: LI Jingtao, ZHANG Shuangcheng, LIU Ning, CHEN Xiongchuan, WANG Jie, FENG Zhijie. Ground-based GNSS is used for multi-parameter inversion of surface environment in frozen soil areas[J]. GNSS World of China, 2023, 48(5): 117-124. DOI: 10.12265/j.gnss.2023162

Ground-based GNSS is used for multi-parameter inversion of surface environment in frozen soil areas

More Information
  • Received Date: August 04, 2023
  • Available Online: October 22, 2023
  • Seasonal frozen soil has the physical characteristics of periodic surface uplift/settlement, and traditional measurement methods can no longer meet the current high-precision and real-time monitoring needs. Ground-based GNSS is a low-cost, all-day, all-weather, and emerging ground-based remote sensing technology that can achieve continuous monitoring. In this paper, based on the observation data of SG27 station of the U.S. Continental plate boundary observation (PBO) GNSS netuork program from 2013 to 2021, the ground-based GNSS technology is used to interpret the snow in typical abnormal years in the Permafrost region of Barrow, Alaska, and the surface deformation, station deformation, soil moisture, and atmospheric water vapor changes in the last nine years of long time series snow free period. The retrieval accuracy of snow depth in abnormal years is verified through the PBO measured snow data, Verify that the inversion result is the deformation of the permafrost active layer through the deformation results of the measuring station, and conduct correlation analysis between water vapor and soil moisture. The results show that the absolute coefficient R2 of retrieved snow depth and measured snow depth is 0.8155, the root mean square error (RMSE) is 0.0643, and the mean absolute error (MAE) is 0.0402; Through the trend chart of water vapor and soil moisture changes, it is found that there is a weak lag relationship between the two on the rainfall threshold, but only in the trend rather than the amplitude. It shows that ground-based GNSS has great application potential in long-term permafrost environmental monitoring..
  • [1]
    邱国庆, 刘经仁, 刘鸿绪. 冻土学词典[M]. 兰州: 甘肃科学技术出版社, 1994.
    [2]
    SHUR Y, HINKEL K M, NELSON F E. The transient layer: implications for geocryology and climate-change science[J]. Permafrost and periglacial processes, 2005, 16(1): 5-17. DOI: 10.1002/ppp.518
    [3]
    MACKAY J R. Downward water movement into frozen ground, western arctic coast, canada[J]. Canadian journal of earth sciences, 2011, 20(1): 120-134. DOI: 10.1139/e83-012
    [4]
    MACKAY J R, LESLIE R V. A simple probe for the measurement of frost heave within frozen ground in a permafrost environment[J]. Geological survey of Canada,1987: 37-41. DOI: DOI: 10.4095/122503
    [5]
    SMITH D J. Frost-heave activity in the Mount Rae area, Canadian Rocky Mountains[J]. Arctic and alpine research, 1987, 19(2): 15. DOI: 0.4095/122469
    [6]
    LITTLE J D, SANDALL H, WALEGUR M T, et al. Application of differential global positioning systems to monitor frost heave and thaw settlement in tundra environments[J]. Permafrost and periglacial processes, 2003, 14(4): 349-357. DOI: 10.1002/ppp.466
    [7]
    王磊, 文军, 张堂堂, 等. 卫星被动微波遥感土壤湿度研究进展[J]. 气象科学, 2009, 37(1): 67-73.
    [8]
    LARSON K M, SMALL E E, GUTMANN E, et al. Using GPS multipath to measure soil moisture fluctuations: initial results[J]. GPS solutions, 2008(12): 173-177. DOI: 10.1007/s10291-007-0076-6
    [9]
    LARSON K M, GUTMANNN E D, ZAVOROTNY V U, et al. Can we measure snow depth with GPS receivers?[J]. Geophysical research letters, 2009, 36(17): l17502. DOI: 10.1029/2009GL039430
    [10]
    LIU L, LARSON K M. Decadal changes of surface elevation over permafrost area estimated using reflected GPS signals[J]. The cryosphere, 2018, 12(2): 477-489. DOI: 10.5194/tc-12-477-2018
    [11]
    HU Y F, LIU L, LARSON K M, et al. GPS interferometric reflectometry reveals cyclic elevation changes in thaw and freezing seasons in a permafrost area (Barrow, Alaska)[J]. Geophysical research letters, 2018, 45(11): 5581-5589. DOI: 10.1029/2018GL077960
    [12]
    HU Y, WANG J, LI Z, et al. Ground surface elevation changes over permafrost areas revealed by multiple GNSS interferometric reflectometry[J]. Journal of geodesy, 2022, 96(8): 56. DOI: 10.1007/s00190-022-01646-5
    [13]
    ZHANG J, LIU L, HU Y F. Global Positioning System interferometric reflectometry (GPS-IR) measurements of ground surface elevation changes in permafrost areas in northern Canada[J]. The cryosphere, 2020, 14(6): 1875-1888. DOI: 10.5194/tc-14-18752020.
    [14]
    ZHANG J, LIU L, SU L, et al. Three-in-one: GPS-IR measurements of ground surface elevation changes, soil moisture, and snow depth at a permafrost site in the northeastern Qinghai-Tibet Plateau[J]. The cryosphere, 2021, 16(6): 3021-3033. DOI: 10.5194/tc-2020-236
    [15]
    ZHANG J H, LIU L. Studying frozen ground dynamics by using GNSS interferometric reflectometry: achievements and potential synergy with insar[J]. IEEE international geoscience and remote sensing symposium (IGARSS), 2021. DOI: 10.1109/IGARSS47720.2021.9554065
    [16]
    刘昭宇, 王炳赟, 谢滟馨, 等. 北极巴罗地区1925~2018年气温变化特征分析[J]. 气候变化研究快报, 2019, 8(6): 769-774.
    [17]
    BREWER M C. Some results of geothermal investigations of permafrost in northern Alaska[J]. Eos, transactions American geophysical union, 1958, 39(1): 19-26. DOI: 10.1029/TR039i001p00019
    [18]
    COX C J, STONE R S, DOUGLAS D C, et al. Drivers and environmental responses to the changing annual snow cycle of northern Alaska[J]. Bulletin of the American meteorological society, 2017, 98(12): 2559-2577. DOI: 10.1175/BAMS-D-16-0201.1
    [19]
    张文渊, 张书毕, 郑南山, 等. 联合GNSS/RS多源数据反演三维大气水汽分布研究[J]. 地球物理学报, 2022, 65(6): 1951-1964.

Catalog

    Article Metrics

    Article views (247) PDF downloads (41) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return