GNSS World of China

Volume 49 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
LIU Yanping, SI Tian, BI Huili, ZHANG Manqi, WANG Yong, XU Zuhao. Study on PM2.5 concentration prediction by integrating GNSS, ERA5 PWV, and atmospheric pollutants[J]. GNSS World of China, 2024, 49(2): 69-75. doi: 10.12265/j.gnss.2023151
Citation: LIU Yanping, SI Tian, BI Huili, ZHANG Manqi, WANG Yong, XU Zuhao. Study on PM2.5 concentration prediction by integrating GNSS, ERA5 PWV, and atmospheric pollutants[J]. GNSS World of China, 2024, 49(2): 69-75. doi: 10.12265/j.gnss.2023151

Study on PM2.5 concentration prediction by integrating GNSS, ERA5 PWV, and atmospheric pollutants

doi: 10.12265/j.gnss.2023151
  • Received Date: 2023-07-21
    Available Online: 2024-03-04
  • The prediction of air quality during the winter and spring seasons can be used for the public to make reasonable arrangements for travel and traffic management by relevant government departments. The main influencing factors of PM2.5 concentration include atmospheric pollutants, precipitable water vapor (PWV), etc. To improve the accuracy of PM2.5 concentration prediction, taking Beijing-Tianjin-Hebei region as an example, it was combined fast Fourier transform (FFT) and LSTM neural network methods, considered observation elements such as GNSS, ERA5 PWV, and atmospheric pollutants, and constructed the PM2.5 concentration prediction model to predict the concentration of PM2.5 in the next 24 hours. It was used GNSS PWV to correct the ERA5 PWV in the region and evaluated the accuracy. The public change period of air pollutants, ERA5 PWV and other observation elements are extracted by FFT, and the optimal public period is 78 hours; Select various factors with the best common cycle length as the model input, and the PM2.5 concentration of the 24 hour sequence as the model output. Evaluate model accuracy through RMSE evaluation indicators. The research results are indicated that the accuracy of ERA5 PWV correction model based on GNSS is better than 2 mm in autumn and winter seasons. The prediction accuracy of the FFT-LSTM model is 10.22 μg/m3 in plain, 8.56 μg/m3 in mountainous, and 9.02 μg/m3 in plateau regions, while the predicted time limit of 24 hours. It can effectively predict the PM2.5 concentration in the next 24 hours. This model can provide reference for relevant departments in air pollution control.

     

  • loading
  • [1]
    郦嘉诚, 高庆先, 李亮, 等. 对首要污染物所揭示的京津冀环境空气质量状况的认识启迪与对策建议[J]. 环境科学研究, 2018, 31(10): 1651-1661.
    [2]
    顾芳婷, 胡敏, 王渝, 等. 北京2009-2010年冬、春季PM2.5污染特征[J]. 中国环境科学, 2016, 36(9): 2578-2584.
    [3]
    TANG B Y, XIN Y Y, GAO W K, et al. Characteristics of complex air pollution in typical cities of North China[J]. Atmospheric and oceanic science letters, 2018, 11(7): 1-8. DOI: 10.1080/16742834.2018.1394158
    [4]
    JIANG N, LI Q, SU F C, et al. Chemical characteristics and source apportionment of PM2.5 between heavily polluted days and other days in Zhengzhou, China[J]. Journal of environmental sciences, 2018(66): 188-198. DOI: 10.1016/j.jes.2017.05.006.Epub2017May10
    [5]
    贾佳, 韩力慧, 程水源, 等. 京津冀区域PM2.5及二次无机组分污染特征研究[J]. 中国环境科学, 2018, 38(3): 801-811.
    [6]
    WANG G, CHENG S Y, LANG J L, et al. Characteristic of PM2.5 and assessing effects of emission reduction measures in the heavy polluted city of Shijiazhuang, before, during and after the ceremonial parde 2015[J]. Aeroso land air quality research, 2017, 17(2): 499-512. DOI: 10.4209/aaqr.2016.05.0181
    [7]
    ZHANG Y, BOCQUET M, MALLET V, et al. Realtime air quality forecasting[J]. Atmospheric environment, 2012(60): 632-655. DOI: 0.1016/j.atmosenv.2012.06.031
    [8]
    王平, 张红, 秦作栋, 等. 基于wavelet-SVM的PM10浓度时序数据预测[J]. 环境科学, 2017, 38(8): 3153-3161.
    [9]
    戴李杰, 张长江, 马雷鸣. 基于机器学习的PM2.5短期浓度动态预报模型[J]. 计算机应用, 2017, 37(11): 3057-3063.
    [10]
    宋国君, 国潇丹, 杨啸, 等. 沈阳市PM2.5浓度ARIMA-SVM组合预测研究[J]. 中国环境科学, 2018, 38(11): 4031-4039.
    [11]
    朱亚杰, 李琦, 侯俊雄, 等. 基于支持向量回归的PM2.5浓度实时预测[J]. 测绘科学, 2016, 41(1): 12-17.
    [12]
    FENG X, LI Q, ZHU Y J, et al. Artificial neural networks forecasting of PM2.5, pollution using air mass trajectory based geographic model and wavelet transformation[J]. Atmospheric environment, 2015(107): 118-128. DOI: 10.1016/j.atmosenv.2015.02.030
    [13]
    高愈霄, 汪巍, 黄永海, 等. 基于神经网络和数值模型的重点区域PM2.5预报比较分析[J]. 环境科学, 2022, 43(2): 663-674.
    [14]
    程春英, 尹学博. 雾霾之PM2.5的来源、成分、形成及危害[J]. 大学化学, 2014, 29(5): 1-6.
    [15]
    王勇, 刘严萍, 李江波, 等. 水汽和风速对雾霾在PM2.5/PM10变化的影响[J]. 灾害学, 2015, 30(10): 5-7.
    [16]
    王勇, 刘严萍, 李江波, 等. GPS和无线电探空的水汽变化与PM2.5/PM10变化的相关性研究[J]. 武汉大学学报(信息科学版), 2016, 41(12): 1626-1630.
    [17]
    王勇, 王泓易, 刘严萍, 等. 融合GNSS水汽、风速与大气污染物的河北省冬季PM2.5浓度预测研究[J]. 大地测量与地球动力学, 2020, 40(11): 1145-1152.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(5)

    Article Metrics

    Article views (257) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return