GNSS World of China

Volume 48 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
LU Yuwan, ZHENG Liquan, HU Chao. Analysis and comparison of satellite clock error prediction based on various deep learning algorithms[J]. GNSS World of China, 2023, 48(5): 46-55, 91. doi: 10.12265/j.gnss.2023138
Citation: LU Yuwan, ZHENG Liquan, HU Chao. Analysis and comparison of satellite clock error prediction based on various deep learning algorithms[J]. GNSS World of China, 2023, 48(5): 46-55, 91. doi: 10.12265/j.gnss.2023138

Analysis and comparison of satellite clock error prediction based on various deep learning algorithms

doi: 10.12265/j.gnss.2023138
  • Received Date: 2023-07-11
  • Accepted Date: 2023-07-11
  • Available Online: 2023-10-26
  • Aiming at the problems of the low applicability of the satellite clock error prediction model and the insufficient combination of the type of the satellite-borne atomic clock and the modeling characteristics in the prediction model, four kinds of neural network models suitable for nonlinear processing are proposed to predict satellite clock error. Firstly, the clock error data is preprocessed. Then, the firefly algorithm models were established by using the back-propagation (FA-BPNN) model, the Elman cyclic (Elman) model, the radial basis function (RBF) model, and the convolutional neural network data of 1 d and 7 d based on the CNN-LSTM model GPS precise clock error data from the Wuhan University International GNSS service (IGS) data analysis center (WHU) are used for clock error prediction At last, the effect of the prediction is analyzed and compared from the point of view of different modeling data and different batches of satellites with the same type of atomic clock and different batches of satellites with different types of atomic clock. The results show that: 1) the modeling accuracy of 1 d clock error data is higher than that of 7 d clock error data, and the RBF model has the greatest influence on the prediction accuracy with the increase of clock error data, and the prediction accuracy changes from sub-nanosecond to tens of nanosecond. 2) the prediction accuracy of the four neural network models is related to the satellite operating time in orbit and the type of atomic clock on board. The prediction performance of the satellites with long operating time in orbit is not necessarily bad, and the prediction performance of different types of atomic clock on different batches of satellites may be the same. The cesium atomic clock type satellite has the best prediction accuracy among the four neural network models.

     

  • loading
  • [1]
    HUANG B H, JI Z X, ZHAI R J, et al. Clock bias prediction algorithm for navigation satellites based on a supervised learning long short-term memory neural network[J]. GPS solutions. 2021, 25(2): 1-16. DOI: 10.1007/s10291-021-01115-0
    [2]
    毛悦, 宋小勇, 张清华, 等. BDS-3卫星钟在轨性能评估与分析[J]. 测绘学报, 2023, 52(3): 349-356.
    [3]
    阚昊宇, 胡志刚, 吕逸飞, 等. 利用不同时间同步体制钟差评估北斗三号星载原子钟性能[J]. 武汉大学学报(信息科学版), 2023, 48(4): 604-610.
    [4]
    胡超, 王中元, 王潜心, 等. 一种改进的BDS-2/BDS-3联合精密定轨系统偏差处理模型[J]. 武汉大学学报(信息科学版), 2021, 46(3): 360-370.
    [5]
    吕栋, 欧吉坤, 于胜文. 基于MEA-BP神经网络的卫星钟差预报[J]. 测绘学报, 2020, 49(8): 993-1003. DOI: 10.11947/j.AGCS.2020.20200002
    [6]
    王威, 胡彩波, 赵鹤, 等. 一种LSTM神经网络在卫星钟频率快速变化期间钟差预报的应用[J]. 大地测量与地球动力学, 2023, 43(4): 369-373.
    [7]
    王井利, 佟晓宇, 张梅. 基于PSO-Elman神经网络BDS导航卫星钟差预报[J]. 全球定位系统, 2023, 48(2): 120-126. DOI: 10.12265/j.gnss.2022183
    [8]
    王旭, 柴洪洲, 王昶. 卫星钟差预报的T-S模糊神经网络法[J]. 测绘学报, 2020, 49(5): 580-588. DOI: 10.11947/j.AGCS.2020.20190156
    [9]
    孟彩霞, 吴迪, 雷雨. 基于麻雀搜索算法优化的BP神经网络卫星钟差预报[J]. 大地测量与地球动力学, 2022, 42(2): 125-131.
    [10]
    布金伟, 左小清, 常军, 等. BDS/GPS星载原子钟的短期钟差预报模型研究[J]. 天文学报, 2018, 59(1): 72-86. DOI: 10.15940/j.cnki.0001-5245.2018.01.007
    [11]
    ZITOUNI F, HAROUS S, MAAMRI R. A novel quantum firefly algorithm for global optimization[J]. Arabian journal for science and engineering, 2021(46): 8741-8759. DOI: 10.1007/s13369-021-05608-5
    [12]
    王润, 王井利, 吕栋. 导航卫星钟差预报的Elman神经网络算法研究[J]. 大地测量与地球动力学, 2021, 41(3): 285-289,295. DOI: 10.14075/j.jgg.2021.03.012
    [13]
    张景元. 基于神经网络的卫星钟差预报研究[J]. 计算机工程与设计, 2014, 35(9): 3254-3257. DOI: 10.3969/j.issn.1000-7024.2014.09.053
    [14]
    栗然, 马涛, 张潇, 等. 基于卷积长短期记忆神经网络的短期风功率预测[J]. 太阳能学报, 2021, 42(6): 304-311. DOI: 10.19912/j.0254-0096.tynxb.2019-0209
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(9)

    Article Metrics

    Article views (465) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return