GNSS World of China

Volume 48 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
LIU Dongliang, CHENG Fang, SHEN Pengli, LI Xiaowan, HU Yuhang. LSTM assisted in vehicle GNSS/INS integrated navigation algorithm and performance analysis[J]. GNSS World of China, 2023, 48(5): 21-31. doi: 10.12265/j.gnss.2023111
Citation: LIU Dongliang, CHENG Fang, SHEN Pengli, LI Xiaowan, HU Yuhang. LSTM assisted in vehicle GNSS/INS integrated navigation algorithm and performance analysis[J]. GNSS World of China, 2023, 48(5): 21-31. doi: 10.12265/j.gnss.2023111

LSTM assisted in vehicle GNSS/INS integrated navigation algorithm and performance analysis

doi: 10.12265/j.gnss.2023111
  • Received Date: 2023-05-16
  • Accepted Date: 2023-05-16
  • Available Online: 2023-10-26
  • Aiming at the problem that the positioning accuracy of the vehicle mounted GNSS/INS integrated navigation system declines or even diverges when the GNSS signal is unlocked, a new algorithm based on long short memory (LSTM) neural network assisted integrated navigation is proposed to improve the positioning accuracy and achieve reliable, continuous and stable positioning. The experiment was conducted on mobile integration platform, and the results showed that when the GNSS signal lost lock for 30 seconds, the maximum position error of the LSTM assisted integrated navigation system in the east and north directions decreased by 77.45% and 17.39%, respectively, and the root mean square error (RMSE) decreased by 79.53% and 42.36%, respectively; When the GNSS signal loses lock for 100 seconds, the maximum position error values of LSTM assisted GNSS/INS in the east, north, and sky directions decreased by 60.07%, 98.30%, and 84.65%, respectively, while RMSE decreased by 61.96%, 97.98%, and 84.65%. LSTM assistance greatly improves the navigation performance of the onboard GNSS/INS integrated navigation system.

     

  • loading
  • [1]
    CHEN K, CHANG G, CHEN C. GINav: a MATLAB-based software for the data processing and analysis of a GNSS/INS integrated navigation system[J]. GPS solutions, 2021, 25(3): 1-7. DOI: 10.1007/s10291-021-01144-9
    [2]
    BITAR N A, GAVRILOV A, KHALAF W. Artificial intelligence based methods for accuracy improvement of integrated navigation systems during GNSS signal outages: an analytical overview[J]. Gyroscopy and navigation, 2020, 11(1): 41-58. DOI: 10.1134/S2075108720010022
    [3]
    EL-SHEIMY N, CHIANG K W, NOURELDIN A. The utilization of artificial neural networks for multisensor system integration in navigation and positioning instruments[J]. IEEE transactions on instrumentation and measurement, 2006, 55(5): 1606-1615. DOI: 10.1109/TIM.2006.881033
    [4]
    SHARAF R, NOURELDIN A. Sensor integration for satellite-based vehicular navigation using neural networks[J]. IEEE transactions on neural networks, 2007, 18(2): 589-594. DOI: 10.1109/TNN.2006.890811
    [5]
    鲍泳林, 李皓, 袁鸣, 等. 基于神经网络的INS/GPS组合导航误差补偿研究[J]. 弹箭与制导学报, 2019, 39(2): 55-59.
    [6]
    赵乐宁, 李杰, 冯凯强, 等. GPS失锁时的RBF神经网络辅助组合导航算法[J]. 航天控制, 2022, 40(3): 37-43.
    [7]
    王超, 周军, 黄浩乾, 等. BP神经网络辅助的SINS/GPS组合导航姿态误差补偿方法研究[J]. 电子器件, 2021, 44(4): 987-993. DOI: 10.3969/j.issn.1005-9490.2021.04.041
    [8]
    XU Y, WANG K, JIANG C H, et al. Motion-Constrained GNSS/INS integrated navigation method based on BP neural network[J]. Remote sensing, 2023, 15(1): 154. DOI: 10.3390/rs15010154
    [9]
    闫世霖, 吴德伟, 王伟, 等. 循环神经网络辅助GNSS/SINS组合导航方法及性能分析[J]. 空军工程大学学报(自然科学版), 2021, 22(5): 61-66,81.
    [10]
    严恭敏, 翁浚. 捷联惯导算法与组合导航原理[M]. 西安: 西北工业大学出版社, 2019.
    [11]
    陈凯. GNSS/INS组合导航软件开发[D]. 徐州: 中国矿业大学, 2022.
    [12]
    严恭敏, 李梓阳, 朱宏堡. 基于Allan方差分析的陀螺仪漂移误差辨识与仿真复现[J]. 导航定位学报, 2022, 10(4): 29-33.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(9)

    Article Metrics

    Article views (361) PDF downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return