GNSS World of China

Volume 48 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
SONG Binghong. Accuracy evaluation of ionospheric prediction based on BP neural network model[J]. GNSS World of China, 2023, 48(5): 79-82, 102. doi: 10.12265/j.gnss.2023099
Citation: SONG Binghong. Accuracy evaluation of ionospheric prediction based on BP neural network model[J]. GNSS World of China, 2023, 48(5): 79-82, 102. doi: 10.12265/j.gnss.2023099

Accuracy evaluation of ionospheric prediction based on BP neural network model

doi: 10.12265/j.gnss.2023099
  • Received Date: 2023-05-05
  • Accepted Date: 2023-05-05
  • Available Online: 2023-10-23
  • In view of the characteristics of the high noise, nonlinear and non-stationary dynamic sequence of the total electron content (TEC) time series, based on the BP neural network (BPNN) model, the TEC data of the global ionospheric map (GIM) products provided by the center for orbit determination in Europe (CODE) in the middle and low latitudes, middle latitudes and high latitudes and the corresponding time points, longitude and latitude, solar radio flux F10.7 data, equatorial geomagnetic activity index Dst The global geomagnetic activity index Kp data were trained and ionospheric prediction was carried out. The results confirmed that the BPNN model based on BP neural network can better predict the low latitude, middle latitude and high latitude ionospheric TEC values, and the average relative accuracy reached 90.5%, 88.7% and 85.35% respectively, the adjustment residuals are 1.505 TECU, 1.595 TECU, and 1.885 TECU, with RMSE values of 1.94 TECU, 2.13 TECU, and 3.08 TECU, respectively.

     

  • loading
  • [1]
    姚宜斌, 高鑫. GNSS电离层监测研究进展与展望[J]. 武汉大学学报(信息科学版), 2022, 47(10): 1728-1739.
    [2]
    袁运斌, 霍星亮, 张宝成. 近年来我国GNSS电离层延迟精确建模及修正研究进展[J]. 测绘学报, 2017, 46(10): 1364-1378.
    [3]
    杨玲, 周春元, 苏小宁, 等. 附加IRI模型约束的全球电离层建模及定位精度分析[J]. 同济大学学报(自然科学版), 2021, 49(11): 1606-1613. DOI: 10.11908/j.issn.0253-374x.21007
    [4]
    褚睿韬, 姚宜斌, 孔建. 基于电离层线状变化特征的电离层建模方法[J]. 测绘地理信息, 2022, 47(5): 17-21.
    [5]
    郑敦勇, 姚宜斌, 聂文锋, 等. 基于机器学习集成算法的电离层层析算法迭代初值精化[J]. 地球物理学报, 2022, 65(8): 2796-2812.
    [6]
    袁建刚, 李旺, 刘胜男. 基于深度学习构建的全球电离层NmF2模型[J]. 测绘科学技术学报, 2020, 37(1): 15-20.
    [7]
    徐福隆. 基于深度学习的高纬度电离层闪烁预测[D]. 徐州: 中国矿业大学, 2020.
    [8]
    廖文梯, 陈洲, 赵瑜馨, 等. 利用混合模型LSTM-DNN进行全球电离层TEC map的中短期预报[J]. 航天器环境工程, 2021, 38(3): 281-286.
    [9]
    马国辉, 罗云琪. 基于深度学习GRU模型的电离层总电子含量预报[J]. 测绘与空间地理信息, 2020, 43(S1): 212-215.
    [10]
    吉长东, 王强, 王贵朋, 等. 深度学习LSTM模型的电离层总电子含量预报[J]. 导航定位学报, 2019, 7(3): 76-81.
    [11]
    史坤朋, 郭金运, 刘智敏, 等. 2016-12-25智利M_W7.6地震震前电离层TEC异常探测[J]. 大地测量与地球动力学, 2018, 38(9): 979-985.
    [12]
    袁天娇, 陈艳红, 刘四清, 等. 基于深度学习递归神经网络的电离层总电子含量经验预报模型[J]. 空间科学学报, 2018, 38(1): 48-57. DOI: 10.11728/cjss2018.01.048
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(1)

    Article Metrics

    Article views (155) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return