GNSS World of China

Volume 48 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
WANG Di, WANG Maolei, YANG Yufei, LI Haihang, GE Tiao. Machine learning-based global positioning performance evaluation method of satellite navigation system[J]. GNSS World of China, 2023, 48(5): 83-91. doi: 10.12265/j.gnss.2023086
Citation: WANG Di, WANG Maolei, YANG Yufei, LI Haihang, GE Tiao. Machine learning-based global positioning performance evaluation method of satellite navigation system[J]. GNSS World of China, 2023, 48(5): 83-91. doi: 10.12265/j.gnss.2023086

Machine learning-based global positioning performance evaluation method of satellite navigation system

doi: 10.12265/j.gnss.2023086
  • Received Date: 2023-04-11
    Available Online: 2023-10-23
  • For observation data such as pseudorange phase and broadcast ephemeris of satellite navigation systems, this paper adopts technical means such as feature extraction and model regression to find the intrinsic characteristics of the data from two dimensions of data type and observation time, excavate the feature associations between massive station data, and use machine learning methods to evaluate the global positioning performance of satellite navigation systems. The evaluation method proposed in this article has been validated on actual station data. The average positioning accuracy of 12 station models in China and surrounding areas, 1−MAPE, is 92.36%, with the worst being PTGG stations and 1−MAPE being 89.26%. The average positioning accuracy of 120 station models worldwide, 1−MAPE, is 86.59%, the worst being SCOR stations and 1−MAPE being 81.46%, which is in good agreement with the measured values obtained under the traditional mathematical statistical framework, It is shown that the method for evaluating satellite navigation and positioning performance based on machine learning models is feasible and effective. Machine learning models have strong evaluation capabilities and high generalization in big data statistical analysis, breaking through the current global positioning performance evaluation approach that only uses traditional mathematical statistics.

     

  • loading
  • [1]
    宁津生, 姚宜斌, 张小红. 全球导航卫星系统发展综述[J]. 导航定位学报, 2013, 1(1): 3-8. DOI: 10.16547/j.cnki.10-1096.2013.01.005
    [2]
    中国卫星导航系统管理办公室(CSNO). 北斗卫星导航系统公开服务性能规范(3.0)[S]. 2021.
    [3]
    HSU LI-TA. GNSS multipath detection using a machine learning approach[C]//IEEE 20th International Conference on Intelligent Transportation Systems(ITSC), 2017. DOI: 10.1109/ITSC.2017.8317700
    [4]
    LINTY N, FARASIN A, FAVENZA A, et al. Detection of GNSS ionospheric scintillations based on machine learning decision tree[J]. IEEE transations on aerospace and electronic systems, 2018, 55(1): 303-317. DOI: 10.1109/TAES.2018.2850385
    [5]
    周相兵. GNSS数据的智能聚类学习算法研究[J]. 测绘学报, 2019, 48(8): 1072.
    [6]
    XIA Y, PAN S G, MENG X L, et al. Anomaly decetion for urban vehicle GNSS observation with a hybrid machine learning system[J]. Remote sensing, 2020, 12(6): 971. DOI: 10.3390/rs12060971
    [7]
    KIANI S M. A precise machine learning aided algorithm for land subsidence or upheave prediction from GNSS time series[J]. arXiv: signal processing, 2020: 1-10. DOI: 10.48550/arxiv.2006.03772
    [8]
    骆黎明. 基于机器学习树模型的GNSS—R海面风场反演研究[D]. 北京: 中国科学院大学,2019.
    [9]
    GBDT算法原理以及实例理解(含Python代码简单实现版)[EB/OL]. (2022-08-24)[2023-04-10]. https://blog.csdn.net/wzk4869/article/details/126471404
    [10]
    支持向量回归(SVR)的详细介绍以及推导算法[EB/OL]. (2022-09-06)[2023-04-10]. https://cloud.tencent.com/developer/article/2095877
    [11]
    多层感知机(MLP)简介[EB/OL]. (2022-04-01)[2023-04-10]. https://wenku.baidu.com/view/ae6352af6b0203d8ce2f0066f5335a8102d266fa.html?_wkts_
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views (328) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return