• 中国科学引文数据库(CSCD)
  • 中文科技期刊数据库
  • 中国核心期刊(遴选)数据库
  • 日本科学技术振兴机构数据库(JST)
  • 中国学术期刊(网络版)(CNKI)
  • 中国学术期刊综合评价数据库(CAJCED)
  • 中国超星期刊域出版平台
GNSS World of China

GNSS World of China

FANG Jing, TU Rui, WANG Peiyuan, TAO Linlin, ZUO Hang. Performance analysis of undifferenced PPP ambiguity resolution with LEO enhanced GPS, Galileo, BDS-3[J]. GNSS World of China, 2023, 48(4): 99-107. DOI: 10.12265/j.gnss.2023044
Citation: FANG Jing, TU Rui, WANG Peiyuan, TAO Linlin, ZUO Hang. Performance analysis of undifferenced PPP ambiguity resolution with LEO enhanced GPS, Galileo, BDS-3[J]. GNSS World of China, 2023, 48(4): 99-107. DOI: 10.12265/j.gnss.2023044

Performance analysis of undifferenced PPP ambiguity resolution with LEO enhanced GPS, Galileo, BDS-3

More Information
  • Received Date: March 13, 2023
  • Accepted Date: March 13, 2023
  • Available Online: August 21, 2023
  • This paper focused on the stability of uncalibrated phase delays (UPD) of GPS, Galileo, BDS-3, and the low earth orbit (LEO) augmented undifferenced precise point positioning (PPP) ambiguity resolution. Based on the observation data of 126 global distributed MGEX stations of 7 days from 001 to 007 in 2022 were employed for UPDs estimation of GPS, Galileo, BDS-3. Wide-lane UPDs were estimated as a set of constants every day and narrow-lane UPDs were estimated as a set of constants every 15 minutes. The results showed that the wide-lane UPSs had good stability within one week, and the average standard deviation was less than 0.05 cycles. The narrow-lane UPDs had good stability within 1 day, and the average standard deviation was less than 0.06 cycles. Using the estimated UPDs products for PPP AR and analyzing their performance, the average convergence time of GPS, Galileo and BDS-3 was shortened from 20.75 min, 23.78 min, 30.60 min to 10.69 min, 18.27 min, 24.80 min, respectively, and the average ambiguity fix rates were 90.41%, 77.22% and 67.21%, respectively. The average value of root-mean square error (RMSE) in the east, north and up components decreased from (1.59 cm, 0.91 cm, 3.30 cm), (1.58 cm, 0.93 cm, 3.24 cm), (1.61 cm, 0.98 cm, 3.39 cm) to (0.90 cm, 0.89 cm, 2.98 cm), (1.33 cm, 0.85 cm, 2.90 cm) and (1.47 cm, 1.18 cm, 2.94 cm), respectively. Using the simulated LEO constellation observation data, the enhancement effect of different number of LEO satellites was studied, and the enhancement effect became more significant when the number of LEO visible satellites is more. When the number of LEO visible satellites was 10, the average convergence time of GPS, Galileo and BDS-3 were improved from 10.69 min, 18.27 min, 24.80 min to 1.53 min, 1.71 min, 1.94 min, and average ambiguity fixing rates were improved from 90.41%, 77.22%, 67.51% to 93.43%, 79.99%, 72.00%, respectively.
  • [1]
    KOUBA J, HÉROUX P. Precise point positioning using IGS orbit and clock products[J]. GPS solutions, 2001, 5(2): 12-28. DOI: 10.1007/PL00012883
    [2]
    HU J H, ZHANG X H, LI P, et al. Multi-GNSS fractional cycle bias products generation for GNSS ambiguity-fixed PPP at Wuhan University[J]. GPS solutions, 2020, 24(1): 15. DOI: 10.1007/s10291-019-0929-9
    [3]
    GABOR M J, NEREM R S. GPS carrier phase ambiguity resolution using satellite-satellite single differences[C]//Proceedings of ION GNSS 12th International Technical Meeting of the Satellite Division, 1999: 1569-1578.
    [4]
    GE M R, GENDT G, ROTHACHER M, et al. Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations[J]. Journal of geodesy, 2008, 82(7): 389-399. DOI: 10.1007/s00190-007-0187-4
    [5]
    COLLINS P, LAHAYE F, HÉROUX P, et al. Precise point positioning with ambiguity resolution using the decoupled clock model[C]//Proceedings of International Technical Meeting of the Satellite Division of the Institute of Navigation, 2008: 16-19.
    [6]
    GENG J H, TEFERLE F N, SHI C, et al. Ambiguity resolution in precise point positioning with hourly data[J]. GPS solutions, 2009(13): 263-270. DOI: 10.1007/s10291-009-0119-2
    [7]
    LAURICHESSE D, MERCIER F, BERTHIAS J P, et al. Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination[J]. Navigation, 2009, 56(2): 135-149. DOI: 10.1002/navi.2009.56.issue-2
    [8]
    张小红, 李盼, 朱锋. 卫星端宽巷载波相位小数偏差估计方法研究与结果分析[J]. 武汉大学学报(信息科学版), 2012, 37(10): 1177-1180.
    [9]
    李林阳, 崔阳, 王宇谱, 等. 窄巷FCB估计方法改进及时变特性分析[J]. 测绘学报, 2017, 46(01): 34-43. DOI: 10.11947/j.AGCS.2017.20160222
    [10]
    宋保丰, 郝金明, 师一帅, 等. 非差FCB估计及其在PPP模糊度固定中的应用[J]. 全球定位系统, 2019, 44(3): 32-37.
    [11]
    ZHAO B, XIONG Y L, XU S G, et al. Using only observation station data for PPP ambiguity resolution by UPD estimation [J]. Advances in space research, 2021, 67(6): 1805-1815. DOI: 10.1016/j.asr.2020.12.033
    [12]
    LI B F, GE H B, GE M R, et al. LEO enhanced Global Navigation Satellite System (LeGNSS) for real-time precise positioning services[J]. Advances in space research, 2019, 63(1): 73-93. DOI: 10.1016/j.asr.2018.08.017
    [13]
    ZHAO Q, PAN S G, GAO C F, et al. BDS/GPS/LEO triple-frequency uncombined precise point positioning and its performance in harsh environments[J]. Measurement, 2020(151): 107216. DOI: 10.1016/j.measurement.2019.107216
    [14]
    KE M X, LV J, CHANG J, et al. Integrating GPS and LEO to accelerate convergence time of precise point positioning[C]//International Conference on Wireless Communications & Signal Processing (WCSP), IEEE, 2015: 1-5. DOI: 10.1109/WCSP.2015.7341230
    [15]
    GE H B, LI B F, GE M R, et al. Initial Assessment of precise point positioning with LEO Enhanced Global Navigation Satellite Systems (LeGNSS)[J]. Remote sensing, 2018, 10(7): 984. DOI: 10.3390/rs10070984
    [16]
    LI X X, MA F J, LI X, et al. LEO Constellation-augmented multi-GNSS for rapid PPP convergence[J]. Journal of geodesy, 2019, 93(5): 749-764. DOI: 10.1007/s00190-018-1195-2
    [17]
    GE H B, LI B F, NIE L W, et al. LEO constellation optimization for LEO Enhanced Global Navigation Satellite System (LeGNSS)[J]. Advances in space research, 2020, 66(3): 520-532. DOI: 10.1016/j.asr.2020.04.031
    [18]
    LIU J, HAO J, YANG Y, et al. Design optimization of low earth orbit constellation based on BeiDou Satellite Navigation System precise point positioning[J]. IET radar, sonar & navigation, 2022, 16(8): 1241-1252. DOI: 10.1049/rsn2.12257
    [19]
    HONG J, TU R, ZHANG P F, et al. GNSS rapid precise point positioning enhanced by low Earth orbit satellites[J]. Satellite navigation, 2023, 4(1): 1-13. DOI: 10.1186/s43020-023-00100-x
    [20]
    张小红, 李盼, 李星星, 等. 宽巷载波相位模糊度小数偏差时变特性分析[J]. 测绘学报, 2013, 42(6): 798-803.
  • Cited by

    Periodical cited type(2)

    1. 耿敏嫣,林红磊,唐小妹,孙鹏跃,刘哲. 基于线性调频的低轨导航信号波形综述. 全球定位系统. 2025(02): 109-117 . 本站查看
    2. 柴鑫. BDS-3/GPS/Galileo兼容频率紧组合短基线性能分析. 测绘与空间地理信息. 2024(S1): 249-251 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (263) PDF downloads (67) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return